Suppr超能文献

基于开源数据记录器对牲畜GPS项圈的评估为记录强度提供了最佳实践方法。

Assessment of a livestock GPS collar based on an open-source datalogger informs best practices for logging intensity.

作者信息

McGranahan Devan Allen, Geaumont Benjamin, Spiess Jonathan W

机构信息

School of Natural Resource Sciences North Dakota State University Fargo North Dakota.

Hettinger Research Extension Center Hettinger North Dakota.

出版信息

Ecol Evol. 2018 May 7;8(11):5649-5660. doi: 10.1002/ece3.4094. eCollection 2018 Jun.

Abstract

Ecologists have used Global Positioning Systems (GPS) to track animals for 30 years. Issues today include logging frequency and precision in estimating space use and travel distances, as well as battery life and cost. We developed a low-cost (~US$125), open-source GPS datalogger based on Arduino. To test the system, we collected positions at 20-s intervals for several 1-week durations from cattle and sheep on rangeland in North Dakota. We tested two questions of broad interest to ecologists who use GPS collars to track animal movements: (1) How closely do collared animals cluster in their herd? (2) How well do different logging patterns estimate patch occupancy and total daily distance traveled? Tested logging patterns included regular logging (one position every 5 or 10 min), and burst logging (positions recorded at 20-s intervals for 5 or 10 min per hour followed by a sleep period). Collared sheep within the same pasture spent 75% of daytime periods within 51 m of each other (mean = 42 m); collared cattle were within 111 m (mean = 76 m). In our comparison of how well different logging patterns estimate space use versus constant logging, the proportion of positions recorded in 1- and 16-ha patches differed by 2%-3% for burst logging and 1% for regular logging. Although all logging patterns underestimated total daily distance traveled, underestimations were corrected by multiplying estimations by regression coefficients estimated by maximum likelihood. Burst logging can extend battery life by a factor of 7. We conclude that a minimum of two collars programmed with burst logging robustly estimate patch use and spatial distribution of grazing livestock herds. Research questions that require accurately estimating travel of individual animals, however, are probably best addressed with regular logging intervals and will thus have greater battery demands than spatial occupancy questions across all GPS datalogger systems.

摘要

30年来,生态学家一直使用全球定位系统(GPS)追踪动物。如今的问题包括记录频率、估计空间利用和移动距离的精度,以及电池寿命和成本。我们基于Arduino开发了一种低成本(约125美元)的开源GPS数据记录器。为了测试该系统,我们在北达科他州牧场的牛和羊身上,以20秒的间隔收集了几个为期1周的时间段内的位置数据。我们测试了两个使用GPS项圈追踪动物活动的生态学家普遍感兴趣的问题:(1)佩戴项圈的动物在其畜群中的聚集程度如何?(2)不同的记录模式对斑块占用率和每日总移动距离的估计效果如何?测试的记录模式包括定期记录(每5或10分钟记录一个位置)和突发记录(每小时以20秒的间隔记录5或10分钟的位置,然后进入休眠期)。同一牧场内佩戴项圈的绵羊在白天有75%的时间彼此距离在51米以内(平均为42米);佩戴项圈的牛则在111米以内(平均为76米)。在比较不同记录模式与持续记录对空间利用的估计效果时,突发记录在1公顷和16公顷斑块中记录的位置比例相差2%-3%,定期记录相差1%。尽管所有记录模式都低估了每日总移动距离,但通过将估计值乘以最大似然估计的回归系数可以校正低估。突发记录可将电池寿命延长7倍。我们得出结论,至少两个编程为突发记录的项圈能够可靠地估计放牧畜群的斑块利用和空间分布。然而,对于需要精确估计个体动物移动的研究问题,可能最好采用定期记录间隔,因此在所有GPS数据记录器系统中,这类问题的电池需求将比空间占用问题更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16ec/6010917/192d632bca4d/ECE3-8-5649-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验