Suppr超能文献

利用漫反射-吸光傅里叶变换红外光谱和人工神经网络快速鉴定链球菌和肠球菌属菌种

Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks.

作者信息

Goodacre R, Timmins E M, Rooney P J, Rowland J J, Kell D B

机构信息

Institute of Biological Sciences, University of Wales, Aberystwyth, UK.

出版信息

FEMS Microbiol Lett. 1996 Jul 1;140(2-3):233-9. doi: 10.1016/0378-1097(96)00186-3.

Abstract

Diffuse reflectance-absorbance Fourier transform infrared spectroscopy (FT-IR) was used to analyse 19 hospital isolates which had been identified by conventional means to one Enterococcus faecalis, E. faecium, Streptococcus bovis, S. mitis, S. pneumoniae, or S. pyogenes. Principal components analysis of the FT-IR spectra showed that this 'unsupervised' learning method failed to form six separable clusters (one of each species) and thus could not be used to identify these bacteria base on their FT-IR spectra. By contrast, artificial neural networks (ANNs) could be trained by 'supervised' learning (using the back-propagation algorithm) with the principal components scores of derivatised spectra to recognise the strains from their FT-IR spectra. These results demonstrate that the combination of FT-IR and ANNs provides a rapid, novel and accurate bacterial identification technique.

摘要

漫反射-吸光度傅里叶变换红外光谱法(FT-IR)用于分析19株医院分离菌,这些菌株已通过传统方法鉴定为粪肠球菌、屎肠球菌、牛链球菌、缓症链球菌、肺炎链球菌或化脓性链球菌中的一种。FT-IR光谱的主成分分析表明,这种“无监督”学习方法未能形成六个可分离的簇(每个物种一个),因此不能基于FT-IR光谱来鉴定这些细菌。相比之下,人工神经网络(ANN)可以通过“有监督”学习(使用反向传播算法),利用衍生光谱的主成分得分,从FT-IR光谱中识别菌株。这些结果表明,FT-IR和ANN的结合提供了一种快速、新颖且准确的细菌鉴定技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验