Goodacre R, Timmins E M, Rooney P J, Rowland J J, Kell D B
Institute of Biological Sciences, University of Wales, Aberystwyth, UK.
FEMS Microbiol Lett. 1996 Jul 1;140(2-3):233-9. doi: 10.1016/0378-1097(96)00186-3.
Diffuse reflectance-absorbance Fourier transform infrared spectroscopy (FT-IR) was used to analyse 19 hospital isolates which had been identified by conventional means to one Enterococcus faecalis, E. faecium, Streptococcus bovis, S. mitis, S. pneumoniae, or S. pyogenes. Principal components analysis of the FT-IR spectra showed that this 'unsupervised' learning method failed to form six separable clusters (one of each species) and thus could not be used to identify these bacteria base on their FT-IR spectra. By contrast, artificial neural networks (ANNs) could be trained by 'supervised' learning (using the back-propagation algorithm) with the principal components scores of derivatised spectra to recognise the strains from their FT-IR spectra. These results demonstrate that the combination of FT-IR and ANNs provides a rapid, novel and accurate bacterial identification technique.
漫反射-吸光度傅里叶变换红外光谱法(FT-IR)用于分析19株医院分离菌,这些菌株已通过传统方法鉴定为粪肠球菌、屎肠球菌、牛链球菌、缓症链球菌、肺炎链球菌或化脓性链球菌中的一种。FT-IR光谱的主成分分析表明,这种“无监督”学习方法未能形成六个可分离的簇(每个物种一个),因此不能基于FT-IR光谱来鉴定这些细菌。相比之下,人工神经网络(ANN)可以通过“有监督”学习(使用反向传播算法),利用衍生光谱的主成分得分,从FT-IR光谱中识别菌株。这些结果表明,FT-IR和ANN的结合提供了一种快速、新颖且准确的细菌鉴定技术。