Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11155-9567, Iran.
Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, Montreal, QC, Canada.
Ann Biomed Eng. 2018 Nov;46(11):1830-1843. doi: 10.1007/s10439-018-2078-7. Epub 2018 Jun 26.
Biomechanical models of the spine either simplify intervertebral joints (using spherical joints or deformable beams) in musculoskeletal (MS) or overlook musculature in geometrically-detailed passive finite element (FE) models. These distinct active and passive models therefore fail to determine in vivo stresses and strains within and load-sharing among the joint structures (discs, ligaments, and facets). A novel hybrid active-passive spine model is therefore developed in which estimated trunk muscle forces from a MS model for in vivo activities drive a mechanically-equivalent passive FE model to quantify in vivo T12-S1 compression/shear loads, intradiscal pressures (IDP), centers of rotation (CoR), ligament/facet forces, and annulus fiber strains. The predicted and in vivo L4-L5 IDP and L1-S1 CoRs showed satisfactory agreements. The FE model under commonly-used in vitro loading (pure moments and follower loads) predicted different kinetics from those of the hybrid model under in vivo loads (muscle exertions and gravity loads) contributing to suggest the inadequacy of such in vitro loads when simulating in vivo tasks. For an improved assessment of the injury risk, evaluation of the internal loads, and design of implants, such hybrid models should therefore be used.
脊柱生物力学模型要么简化了脊椎关节(使用球形关节或可变形梁)在肌肉骨骼系统(MS)中的作用,要么忽略了在几何上详细的被动有限元(FE)模型中的肌肉。因此,这些明显的主动和被动模型无法确定关节结构(椎间盘、韧带和关节面)内的体内应力和应变以及它们之间的载荷分配。因此,开发了一种新型的混合主动-被动脊柱模型,其中来自 MS 模型的估计躯干肌肉力用于驱动机械等效的被动 FE 模型,以量化体内 T12-S1 压缩/剪切载荷、椎间盘内压力(IDP)、旋转中心(CoR)、韧带/关节面力和纤维环应变。预测的和体内的 L4-L5 IDP 和 L1-S1 CoR 显示出令人满意的一致性。在体内载荷(肌肉用力和重力载荷)下,FE 模型预测的动力学与混合模型不同,这表明在模拟体内任务时,这种体外载荷是不充分的。因此,为了更好地评估损伤风险、评估内部载荷和设计植入物,应该使用这种混合模型。