Suppr超能文献

一种新型的脊柱运动节段耦合有限元模型——对某些任务中躯干模型的关键评估。

A novel coupled musculoskeletal finite element model of the spine - Critical evaluation of trunk models in some tasks.

机构信息

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.

出版信息

J Biomech. 2021 Apr 15;119:110331. doi: 10.1016/j.jbiomech.2021.110331. Epub 2021 Feb 16.

Abstract

Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (38%), segmental (44%) and disc (22%) compression forces but larger segmental (9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.

摘要

脊柱肌肉骨骼 (MS) 模型对椎间关节自由度 (旋转和/或平移)、表示形式 (球形或梁状关节) 和特性 (线性或非线性) 做出简化假设。它们通常还忽略了具有椎间盘核/环、关节面和韧带的关节的真实结构。我们的目标是开发一种新的 MS 模型,其中将躯干肌肉纳入到韧带 T12-S1 脊柱的详细有限元 (FE) 模型中,从而构建一个黄金标准的耦合 MS-FE 模型。将模型预测与我们之前的球形关节、梁关节和混合 (非耦合) MS-FE 模型的预测进行比较。在某些任务下,耦合模型预测的 L4-L5 椎间盘内压力 (R≅0.97,RMSE≅0.27 MPa) 和 L1-S1 旋转中心 (CoR) 与体内数据一致。在更大的躯干屈曲角度下,模型预测的差异增大;在峰值 (80°) 屈曲时,与混合模型相比,耦合模型预测的整体/局部肌肉力 (38%)、节段 (44%) 和椎间盘 (22%) 压缩力要小得多,但节段 (9%) 和椎间盘 (~17%) 剪切力、下腰椎水平的韧带力 (高达 57%) 和所有水平的关节面力要大得多。在更大的屈曲角度下,球形/梁关节模型预测的肌肉力和节段载荷更大。与具有固定 CoR 的球形关节模型不同,梁关节模型预测的 CoR 更接近 (在屈曲任务中 RMSE=2.3 mm) 耦合模型的 CoR。该耦合模型为未来的研究提供了巨大的潜力,有助于改进手术技术、管理肌肉骨骼损伤和针对特定个体的模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验