IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain.
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany.
Bull Math Biol. 2018 Aug;80(8):2154-2176. doi: 10.1007/s11538-018-0451-1. Epub 2018 Jun 12.
The traditional way of tackling discrete optimization problems is by using local search on suitably defined cost or fitness landscapes. Such approaches are however limited by the slowing down that occurs when the local minima that are a feature of the typically rugged landscapes encountered arrest the progress of the search process. Another way of tackling optimization problems is by the use of heuristic approximations to estimate a global cost minimum. Here, we present a combination of these two approaches by using cover-encoding maps which map processes from a larger search space to subsets of the original search space. The key idea is to construct cover-encoding maps with the help of suitable heuristics that single out near-optimal solutions and result in landscapes on the larger search space that no longer exhibit trapping local minima. We present cover-encoding maps for the problems of the traveling salesman, number partitioning, maximum matching and maximum clique; the practical feasibility of our method is demonstrated by simulations of adaptive walks on the corresponding encoded landscapes which find the global minima for these problems.
传统解决离散优化问题的方法是通过在适当定义的成本或适应度景观上进行局部搜索。然而,这种方法受到通常遇到的崎岖景观中局部最小值的减缓的限制,这些局部最小值会阻止搜索过程的进展。解决优化问题的另一种方法是使用启发式近似值来估计全局成本最小值。在这里,我们通过使用覆盖编码图将这两种方法结合起来,该图将较大搜索空间中的过程映射到原始搜索空间的子集。关键思想是使用合适的启发式算法构建覆盖编码图,这些启发式算法可以挑出接近最优的解决方案,并导致较大搜索空间上的景观不再出现捕获局部最小值的情况。我们为旅行商、数字划分、最大匹配和最大团问题提供了覆盖编码图;通过对相应编码景观上的自适应游走进行模拟,证明了我们方法的实际可行性,这些模拟找到了这些问题的全局最小值。