Suppr超能文献

两步对接位点模型预测不同的短期突触可塑性模式。

A two-step docking site model predicting different short-term synaptic plasticity patterns.

机构信息

Laboratory of Brain Physiology, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8118, Paris Descartes University, Paris, France.

Laboratory of Brain Physiology, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8118, Paris Descartes University, Paris, France

出版信息

J Gen Physiol. 2018 Aug 6;150(8):1107-1124. doi: 10.1085/jgp.201812072. Epub 2018 Jun 27.

Abstract

The strength of synaptic transmission varies during trains of presynaptic action potentials, notably because of the depletion of synaptic vesicles available for release. It has remained unclear why some synapses display depression over time, whereas others facilitate or show a facilitation and depression sequence. Here we compare the predictions of various synaptic models assuming that several docking/release sites are acting in parallel. These models show variation of docking site occupancy during trains of action potentials due to vesicular release and site replenishment, which give rise to changes in synaptic strength. To conform with recent studies, we assume an initial docking site occupancy of <1, thus permitting site occupancy to increase during action potential trains and facilitation to occur. We consider both a standard one-step model and a more elaborate model that assumes a predocked state (two-step model). Whereas the one-step model predicts monotonic changes of synaptic strength during a train, the two-step model allows nonmonotonic changes, including the often-observed facilitation/depression sequence. Both models predict a partitioning of parameter space between initially depressing and facilitating synapses. Using data obtained from interneuron synapses in the cerebellum, we demonstrate an unusual form of depression/facilitation sequence for very high release probability after prolonged depolarization-induced transmitter release. These results indicate a depletion of predocked vesicles in the two-step model. By permitting docking site occupancy to be <1 at rest, and by incorporating a separate predocked state, we reveal that docking site models can be expanded to mimic the large variety of time-dependent changes of synaptic strength that have been observed during action potential trains. Furthermore, the two-step model provides an effective framework to identify the specific mechanisms responsible for short-term changes in synaptic strength.

摘要

在一连串的动作电位中,突触传递的强度会发生变化,这主要是因为可供释放的突触小泡耗尽。目前仍不清楚为什么有些突触会随着时间的推移而出现抑制,而有些突触则会增强或出现增强和抑制的序列。在这里,我们比较了各种假设存在多个停靠/释放位点并行作用的突触模型的预测结果。这些模型表明,由于囊泡释放和位点补充,在一连串的动作电位中,停靠位点的占有率会发生变化,从而导致突触强度的变化。为了与最近的研究相符,我们假设初始停靠位点的占有率<1,从而允许在动作电位序列中增加站点占有率并发生增强。我们考虑了标准的单步模型和一个更详细的模型,该模型假设存在预停靠状态(两步模型)。虽然单步模型预测在一连串的动作中,突触强度会发生单调变化,但两步模型允许出现非单调变化,包括经常观察到的增强/抑制序列。两种模型都预测了初始具有抑制性和增强性的突触之间的参数空间分区。我们利用从小脑中间神经元突触获得的数据,展示了一种非常高的释放概率下,长时间去极化诱导递质释放后出现的异常抑制/增强序列。这些结果表明在两步模型中预停靠的囊泡耗尽。通过允许在静息时的停靠位点占有率<1,并引入单独的预停靠状态,我们揭示了停靠位点模型可以扩展,以模拟在一连串动作电位中观察到的大量不同的突触强度随时间变化的情况。此外,两步模型为识别导致动作电位序列中突触强度短期变化的特定机制提供了一个有效的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5898/6080900/5cd7714c908d/JGP_201812072_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验