Suppr超能文献

存在未测量混杂因素时的工具变量分析

Instrumental variable analysis in the presence of unmeasured confounding.

作者信息

Zhang Zhongheng, Uddin Md Jamal, Cheng Jing, Huang Tao

机构信息

Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.

Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh.

出版信息

Ann Transl Med. 2018 May;6(10):182. doi: 10.21037/atm.2018.03.37.

Abstract

Observational studies are prone to bias due to confounding either measured or unmeasured. While measured confounding can be controlled for with a variety of sophisticated methods such as propensity score-based matching, stratification and multivariable regression model, the unmeasured confounding is usually cumbersome, leading to biased estimates. In econometrics, instrumental variable (IV) is widely used to control for unmeasured confounding. However, its use in clinical researches is generally less employed. In some subspecialties of clinical medicine such as pharmacoepidemiological research, IV analysis is increasingly used in recent years. With the development of electronic healthcare records, more and more healthcare data are available to clinical investigators. Such kind of data are observational in nature, thus estimates based on these data are subject to confounding. This article aims to review several methods for implementing IV analysis for binary and continuous outcomes. R code for these analyses are provided and explained in the main text.

摘要

观察性研究容易因测量或未测量的混杂因素而产生偏差。虽然测量的混杂因素可以通过多种复杂方法进行控制,如倾向得分匹配、分层和多变量回归模型,但未测量的混杂因素通常很麻烦,会导致估计有偏差。在计量经济学中,工具变量(IV)被广泛用于控制未测量的混杂因素。然而,它在临床研究中的应用通常较少。在临床医学的一些亚专业中,如药物流行病学研究,近年来IV分析的应用越来越多。随着电子健康记录的发展,临床研究人员可以获得越来越多的医疗数据。这类数据本质上是观察性的,因此基于这些数据的估计容易受到混杂因素的影响。本文旨在综述几种用于二元和连续结局进行IV分析的方法。文中提供并解释了这些分析的R代码。

相似文献

7
A tutorial on the use of instrumental variables in pharmacoepidemiology.药物流行病学中工具变量使用教程。
Pharmacoepidemiol Drug Saf. 2017 Apr;26(4):357-367. doi: 10.1002/pds.4158. Epub 2017 Feb 27.

引用本文的文献

8
Toward a better understanding about real-world evidence.迈向对真实世界证据更好的理解。
Eur J Hosp Pharm. 2022 Jan;29(1):8-11. doi: 10.1136/ejhpharm-2021-003081. Epub 2021 Dec 2.

本文引用的文献

4
Using an instrumental variable to test for unmeasured confounding.使用工具变量检验未测量的混杂因素。
Stat Med. 2014 Sep 10;33(20):3528-46. doi: 10.1002/sim.6227. Epub 2014 Jun 15.
5
Instrumental variable methods for causal inference.工具变量法在因果推断中的应用。
Stat Med. 2014 Jun 15;33(13):2297-340. doi: 10.1002/sim.6128. Epub 2014 Mar 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验