Ma Jiaxin, Qin Jieqiong, Zheng Shuanghao, Fu Yinghua, Chi Liping, Li Yaguang, Dong Cong, Li Bin, Xing Feifei, Shi Haodong, Wu Zhong-Shuai
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Nanomicro Lett. 2024 Jan 4;16(1):67. doi: 10.1007/s40820-023-01281-5.
Hierarchically structured NbO microflowers consiste of porous and ultrathin nanosheets. NbO microflowers exhibit enhanced capacity and rate performance boosting Na ion storage. Planar NIMSCs with charge and kinetics matching show superior areal capacitance and lifespan.
Planar Na ion micro-supercapacitors (NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectronics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode. Herein, we demonstrate a novel carbon-coated NbO microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abundant pores, endow the NbO microflower with highly reversible Na ion storage capacity of 245 mAh g at 0.25 C and excellent rate capability. Benefiting from high capacity and fast charging of NbO microflower, the planar NIMSCs consisted of NbO negative electrode and activated carbon positive electrode deliver high areal energy density of 60.7 μWh cm, considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics. [Image: see text]
The online version contains supplementary material available at 10.1007/s40820-023-01281-5.
分层结构的氧化铌(NbO)微花由多孔超薄纳米片组成。NbO微花展现出增强的容量和倍率性能,提升了钠离子存储能力。电荷和动力学相匹配的平面型钠离子微超级电容器(NIMSCs)表现出优异的面积电容和寿命。
兼具高能量密度和功率密度的平面型钠离子微超级电容器(NIMSCs)被认为是用于可穿戴和便携式微电子设备的一类很有前景的小型化电源。然而,负极中低容量和缓慢的钠离子动力学严重阻碍了NIMSCs的发展。在此,我们展示了一种新型的碳包覆NbO微花,其具有由垂直交叉的多孔纳米片组成的分层结构,提升了钠离子存储性能。独特的结构优点,包括均匀的碳包覆、超薄纳米片和丰富的孔隙,赋予了NbO微花在0.25 C下245 mAh g的高度可逆钠离子存储容量和优异的倍率性能。受益于NbO微花的高容量和快速充电特性,由NbO负极和活性炭正极组成的平面型NIMSCs具有60.7 μWh cm的高面积能量密度、3.5 V的可观电压窗口和出色的循环稳定性。因此,这项工作开发了一种用于NIMSCs电极材料的结构设计策略,对柔性微电子设备具有巨大的应用前景。[图片:见原文]
在线版本包含可在10.1007/s40820-023-01281-5获取的补充材料。