Suppr超能文献

将宿主-病原体蛋白质相互作用知识转移到新任务的技术。

Techniques for transferring host-pathogen protein interactions knowledge to new tasks.

作者信息

Kshirsagar Meghana, Schleker Sylvia, Carbonell Jaime, Klein-Seetharaman Judith

机构信息

School of Computer Science, Language Technologies Institute, Carnegie Mellon University Pittsburgh, PA, USA.

Metabolic and Vascular Health, Warwick Medical School, University of Warwick Coventry, UK ; Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn Bonn, Germany.

出版信息

Front Microbiol. 2015 Feb 2;6:36. doi: 10.3389/fmicb.2015.00036. eCollection 2015.

Abstract

We consider the problem of building a model to predict protein-protein interactions (PPIs) between the bacterial species Salmonella Typhimurium and the plant host Arabidopsis thaliana which is a host-pathogen pair for which no known PPIs are available. To achieve this, we present approaches, which use homology and statistical learning methods called "transfer learning." In the transfer learning setting, the task of predicting PPIs between Arabidopsis and its pathogen S. Typhimurium is called the "target task." The presented approaches utilize labeled data i.e., known PPIs of other host-pathogen pairs (we call these PPIs the "source tasks"). The homology based approaches use heuristics based on biological intuition to predict PPIs. The transfer learning methods use the similarity of the PPIs from the source tasks to the target task to build a model. For a quantitative evaluation we consider Salmonella-mouse PPI prediction and some other host-pathogen tasks where known PPIs exist. We use metrics such as precision and recall and our results show that our methods perform well on the target task in various transfer settings. We present a brief qualitative analysis of the Arabidopsis-Salmonella predicted interactions. We filter the predictions from all approaches using Gene Ontology term enrichment and only those interactions involving Salmonella effectors. Thereby we observe that Arabidopsis proteins involved e.g., in transcriptional regulation, hormone mediated signaling and defense response may be affected by Salmonella.

摘要

我们考虑构建一个模型来预测鼠伤寒沙门氏菌与植物宿主拟南芥之间蛋白质 - 蛋白质相互作用(PPI)的问题,这是一对宿主 - 病原体组合,目前尚无已知的PPI。为实现这一目标,我们提出了一些方法,这些方法使用了同源性和称为“迁移学习”的统计学习方法。在迁移学习环境中,预测拟南芥与其病原体鼠伤寒沙门氏菌之间PPI的任务称为“目标任务”。所提出的方法利用标记数据,即其他宿主 - 病原体对的已知PPI(我们将这些PPI称为“源任务”)。基于同源性的方法使用基于生物学直觉的启发式方法来预测PPI。迁移学习方法利用源任务的PPI与目标任务的相似性来构建模型。为了进行定量评估,我们考虑了沙门氏菌 - 小鼠PPI预测以及其他一些存在已知PPI的宿主 - 病原体任务。我们使用精确率和召回率等指标,结果表明我们的方法在各种迁移设置下的目标任务中表现良好。我们对拟南芥 - 沙门氏菌预测的相互作用进行了简要的定性分析。我们使用基因本体术语富集对所有方法的预测进行筛选,只保留那些涉及沙门氏菌效应子的相互作用。由此我们观察到,例如参与转录调控、激素介导信号传导和防御反应的拟南芥蛋白质可能会受到沙门氏菌的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debb/4313693/6e692c8c72a2/fmicb-06-00036-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验