National Bureau of Economic Research, Cambridge, MA 02138, USA.
Department of Economics, Stanford University, Stanford, CA 94305, USA.
Science. 2018 Jun 29;360(6396):1462-1465. doi: 10.1126/science.aar5045.
That one-quarter of Medicare spending in the United States occurs in the last year of life is commonly interpreted as waste. But this interpretation presumes knowledge of who will die and when. Here we analyze how spending is distributed by predicted mortality, based on a machine-learning model of annual mortality risk built using Medicare claims. Death is highly unpredictable. Less than 5% of spending is accounted for by individuals with predicted mortality above 50%. The simple fact that we spend more on the sick-both on those who recover and those who die-accounts for 30 to 50% of the concentration of spending on the dead. Our results suggest that spending on the ex post dead does not necessarily mean that we spend on the ex ante "hopeless."
美国医疗保险支出的四分之一发生在生命的最后一年,这通常被解释为浪费。但这种解释假设了谁将死亡以及何时死亡的知识。在这里,我们根据使用医疗保险索赔建立的年度死亡率风险的机器学习模型来分析按预测死亡率分配的支出情况。死亡是高度不可预测的。预测死亡率高于 50%的个人仅占支出的不到 5%。我们在患病者(包括康复者和死亡者)身上花费更多的简单事实,占死亡者集中支出的 30%至 50%。我们的研究结果表明,对事后死者的支出并不一定意味着我们对事前“无望”者的支出。