Suppr超能文献

针对65岁及以上社区居住成年人1年死亡率的专有风险模型的外部验证。

External validation of a proprietary risk model for 1-year mortality in community-dwelling adults aged 65 years or older.

作者信息

Frechman Erica, Jaeger Byron C, Kowalkowski Marc, Williamson Jeff D, Lenoir Kristin M, Palakshappa Jessica A, Wells Brian J, Callahan Kathryn E, Pajewski Nicholas M, Gabbard Jennifer L

机构信息

Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.

Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.

出版信息

J Am Med Inform Assoc. 2025 Jul 1;32(7):1110-1119. doi: 10.1093/jamia/ocaf062.

Abstract

OBJECTIVE

To examine the discrimination, calibration, and algorithmic fairness of the Epic End of Life Care Index (EOL-CI).

MATERIALS AND METHODS

We assessed the EOL-CI's performance by estimating area under the receiver operating characteristic curve (AUC), sensitivity, and positive and negative predictive values in community-dwelling adults ≥65 years of age in a single health system in the Southeastern United States. Algorithmic fairness was examined by comparing the model's performance across sex, race, and ethnicity subgroups. Using a machine learning approach, we also explored local re-calibration of the EOL-CI considering additional information on past hospitalizations and frailty.

RESULTS

Among 215 731 patients (median age = 74 years, 57% female, 12% of Black race), 10% were classified as medium risk (15-44) and 3% as high risk (≥45) by the EOL-CI. The observed 1-year mortality rate was 3%. The EOL-CI had an AUC 0.82 for 1-year mortality, with a positive predictive value of 22%. Predictive performance was generally similar across sex and race subgroups, though the EOL-CI displayed better performance with increasing age and in older adults with 2 or more outpatient encounters in the past 24 months. Local re-calibration of the EOL-CI was required to provide absolute estimates of mortality risk, and calibration was further improved when the EOL-CI was augmented with data on inpatient hospitalizations and frailty.

DISCUSSION

The EOL-CI demonstrates reasonable discrimination, albeit with better performance in older adults and in those with greater health system contact.

CONCLUSION

Local refinement and calibration of the EOL-CI score is required to provide direct estimates of prognosis, with the goal of making the EOL-CI a more a valuable tool at the point of care for identifying patients who would benefit from targeted palliative care interventions and proactive care planning.

摘要

目的

评估Epic临终关怀指数(EOL-CI)的辨别力、校准度和算法公平性。

材料与方法

我们通过估计美国东南部单一医疗系统中65岁及以上社区居住成年人的受试者操作特征曲线下面积(AUC)、敏感性以及阳性和阴性预测值,来评估EOL-CI的性能。通过比较模型在性别、种族和族裔亚组中的性能来检验算法公平性。使用机器学习方法,我们还考虑了过去住院和虚弱状况的额外信息,探索了EOL-CI的局部重新校准。

结果

在215731名患者(中位年龄 = 74岁,57%为女性,12%为黑人种族)中,EOL-CI将10%的患者分类为中度风险(15 - 44),3%为高风险(≥45)。观察到的1年死亡率为3%。EOL-CI对1年死亡率的AUC为0.82,阳性预测值为22%。预测性能在性别和种族亚组中总体相似,不过EOL-CI在年龄增长以及过去24个月内有2次或更多门诊就诊的老年人中表现更好。需要对EOL-CI进行局部重新校准以提供死亡风险的绝对估计值,并且当EOL-CI增加住院和虚弱数据时,校准得到进一步改善。

讨论

EOL-CI表现出合理的辨别力,尽管在老年人和与医疗系统接触较多的人群中表现更好。

结论

需要对EOL-CI评分进行局部细化和校准以提供预后的直接估计值,目标是使EOL-CI成为在护理点更有价值的工具,用于识别将从针对性姑息治疗干预和积极护理计划中受益的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac91/12199354/515970c6f901/ocaf062f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验