Suppr超能文献

GeneExpressScore 特征:胃癌中稳健的预后和预测分类器。

GeneExpressScore Signature: a robust prognostic and predictive classifier in gastric cancer.

机构信息

State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, China.

出版信息

Mol Oncol. 2018 Nov;12(11):1871-1883. doi: 10.1002/1878-0261.12351. Epub 2018 Sep 28.

Abstract

Although several prognostic signatures have been developed for gastric cancer (GC), the utility of these tools is limited in clinical practice due to lack of validation with large and multiple independent cohorts, or lack of a statistical test to determine the robustness of the predictive models. Here, a prognostic signature was constructed using a least absolute shrinkage and selection operator (LASSO) Cox regression model and a training dataset with 300 GC patients. The signature was verified in three independent datasets with a total of 658 tumors across multiplatforms. A nomogram based on the signature was built to predict disease-free survival (DFS). Based on the LASSO model, we created a GeneExpressScore signature (GES ) classifier comprised of eight mRNA. With this classifier patients could be divided into two subgroups with distinctive prognoses [hazard ratio (HR) = 4.00, 95% confidence interval (CI) = 2.41-6.66, P < 0.0001]. The prognostic value was consistently validated in three independent datasets. Interestingly, the high-GES group was associated with invasion, microsatellite stable/epithelial-mesenchymal transition (MSS/EMT), and genomically stable (GS) subtypes. The predictive accuracy of GES also outperformed five previously published signatures. Finally, a well-performed nomogram integrating the GES and four clinicopathological factors was generated to predict 3- and 5-year DFS. In summary, we describe an eight-mRNA-based signature, GES , as a predictive model for disease progression in GC. The robustness of this signature was validated across patient series, populations, and multiplatform datasets.

摘要

虽然已经开发了几种用于胃癌 (GC) 的预后标志物,但由于缺乏对大型和多个独立队列的验证,或者缺乏用于确定预测模型稳健性的统计检验,这些工具在临床实践中的应用受到限制。在这里,我们使用最小绝对收缩和选择算子 (LASSO) Cox 回归模型和一个包含 300 例 GC 患者的训练数据集构建了一个预后标志物。该标志物在包含跨平台共 658 个肿瘤的三个独立数据集进行了验证。基于该标志物构建了一个列线图来预测无病生存期 (DFS)。基于 LASSO 模型,我们创建了一个由 8 个 mRNA 组成的 GeneExpressScore 标志物 (GES) 分类器。通过该分类器,患者可以分为具有不同预后的两个亚组[风险比 (HR) = 4.00,95%置信区间 (CI) = 2.41-6.66,P < 0.0001]。该预后价值在三个独立的数据集均得到了一致验证。有趣的是,高 GES 组与侵袭、微卫星稳定/上皮-间充质转化 (MSS/EMT) 和基因组稳定 (GS) 亚型相关。GES 的预测准确性也优于五个先前发表的标志物。最后,生成了一个性能良好的列线图,该列线图整合了 GES 和四个临床病理因素,用于预测 3 年和 5 年 DFS。总之,我们描述了一个基于 8 个 mRNA 的标志物 GES,作为 GC 疾病进展的预测模型。该标志物的稳健性在患者系列、人群和多平台数据集上均得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/929e/6210036/9fa24990c5b4/MOL2-12-1871-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验