QuTech, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
Kavli Institute of Nanoscience Delft, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
Nat Commun. 2018 Jun 29;9(1):2552. doi: 10.1038/s41467-018-04916-z.
Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and decoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single nitrogen-vacancy electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. First, we use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states in the electron spin for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times.
单个电子自旋与多个核自旋耦合,为量子传感和量子网络提供了有前途的多量子比特寄存器。可获得的控制水平取决于电子自旋与周围核自旋的选择性耦合和解耦程度。在这里,我们通过针对其微观核自旋环境量身定制的去耦序列,实现了单个氮空位电子自旋的相干时间超过一秒。首先,我们使用电子自旋来探测环境,该环境由七个单独的和六个成对的耦合碳-13 自旋准确描述。我们开发了对碳-13 对的初始化、控制和读出方法,以便直接揭示它们的原子结构。然后,我们利用这些知识,通过仔细避免不必要的相互作用,在电子自旋中存储量子态超过一秒。这些结果为复杂多自旋系统的量子传感提供了原理证明,并为具有长相干时间的多量子比特寄存器提供了机会。