Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy.
Fondazione Toscana "G. Monasterio", Via Moruzzi,1, 56124, Pisa, Italy.
Comput Biol Med. 2018 Aug 1;99:221-235. doi: 10.1016/j.compbiomed.2018.06.015. Epub 2018 Jun 20.
In this work, we propose and test a new approach for non-linear kinetic parameters' estimation from dynamic PET data. A technique is discussed, to derive an analytical closed-form expression of the compartmental model used for kinetic parameters' evaluation, using an auxiliary parameter set, with the aim of reducing the computational burden and speeding up the fitting of these complex mathematical expressions to noisy TACs. Two alternative algorithms based on numeric calculations are considered and compared to the new proposal. We perform a simulation study aimed at (i) assessing agreement between the proposed method and other conventional ways of implementing compartmental model fitting, and (ii) quantifying the reduction in computational time required for convergence. It results in a speed-up factor of ∼120 when compared to a fully numeric version, or ∼38, with respect to a more conventional implementation, while converging to very similar values for the estimated model parameters. The proposed method is also tested on dynamic 3D PET clinical data of four control subjects. The results obtained supported those of the simulation study, and provided input and promising perspectives for the application of the proposed technique in clinical practice.
在这项工作中,我们提出并测试了一种从动态 PET 数据估计非线性动力学参数的新方法。讨论了一种技术,使用辅助参数集从用于动力学参数评估的房室模型中推导出解析的封闭形式表达式,目的是降低计算负担并加快对这些复杂数学表达式到噪声 TAC 的拟合。考虑了两种基于数值计算的替代算法,并与新提议进行了比较。我们进行了一项模拟研究,旨在(i)评估所提出的方法与其他常规实施房室模型拟合的方法之间的一致性,以及(ii)量化收敛所需的计算时间减少。与完全数值版本相比,它的加速因子约为 120,与更常规的实现相比,加速因子约为 38,而对于估计模型参数,收敛到非常相似的值。还在四个对照受试者的动态 3D PET 临床数据上测试了所提出的方法。得到的结果支持了模拟研究的结果,并为在临床实践中应用所提出的技术提供了输入和有希望的观点。