Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy.
Fondazione Toscana G. Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy.
J Healthc Eng. 2018 Jul 8;2018:5942873. doi: 10.1155/2018/5942873. eCollection 2018.
We propose and test a novel approach for direct parametric image reconstruction of dynamic PET data. We present a theoretical description of the problem of PET direct parametric maps estimation as an inference problem, from a probabilistic point of view, and we derive a simple iterative algorithm, based on the Iterated Conditional Mode (ICM) framework, which exploits the simplicity of a two-step optimization and the efficiency of an analytic method for estimating kinetic parameters from a nonlinear compartmental model. The resulting method is general enough to be flexible to an arbitrary choice of the kinetic model, and unlike many other solutions, it is capable to deal with nonlinear compartmental models without the need for linearization. We tested its performance on a two-tissue compartment model, including an analytical solution to the kinetic parameters evaluation, based on an auxiliary parameter set, with the aim of reducing computation errors and approximations. The new method is tested on simulated and clinical data. Simulation analysis led to the conclusion that the proposed algorithm gives a good estimation of the kinetic parameters in any noise condition. Furthermore, the application of the proposed method to clinical data gave promising results for further studies.
我们提出并测试了一种新的方法,用于直接参数化 PET 数据的动态图像重建。我们从概率的角度提出了 PET 直接参数图估计问题作为推理问题的理论描述,并推导出了一种简单的迭代算法,该算法基于迭代条件模式 (ICM) 框架,利用两步优化的简单性和从非线性室模型估计动力学参数的解析方法的效率。所得到的方法足够通用,可以灵活地选择任意的动力学模型,并且与许多其他解决方案不同,它能够处理非线性室模型,而无需线性化。我们在一个两组织室模型上测试了它的性能,该模型包括一个基于辅助参数集的动力学参数评估的解析解,目的是减少计算误差和近似值。新方法在模拟和临床数据上进行了测试。仿真分析得出的结论是,所提出的算法在任何噪声条件下都能很好地估计动力学参数。此外,将所提出的方法应用于临床数据为进一步的研究提供了有希望的结果。