Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Chem Phys. 2018 Jun 28;148(24):241715. doi: 10.1063/1.5011181.
We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network-a composition of many nonlinear transformations-acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.
我们引入层次化相互作用粒子神经网络(HIP-NN),以从量子计算数据集对分子性质进行建模。受多体展开的启发,HIP-NN 将性质(如能量)分解为层次化项的和。这些项由神经网络生成——它由许多非线性变换组成,作用于分子的表示形式上。HIP-NN 在一个包含 131k 个基态有机分子的数据集上取得了最先进的性能,其预测能量的平均绝对误差为 0.26kcal/mol。经过最小的调整,我们的模型在分子动力学轨迹数据集上也具有竞争力。除了能够进行准确的能量预测外,HIP-NN 的层次结构还有助于识别模型不确定性的区域。