Suppr超能文献

基于密度泛函理论的指标,用于估算锌合金在含氯、氧化性和含硫苛刻环境中的腐蚀电位。

Density Functional Theory-Based Indicators to Estimate the Corrosion Potentials of Zinc Alloys in Chlorine-, Oxidizing-, and Sulfur-Harsh Environments.

作者信息

Mukhametov Azamat, Samikov Insaf, Korznikova Elena A, Kistanov Andrey A

机构信息

The Laboratory of Metals and Alloys Under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia.

Polytechnic Institute (Branch) in Mirny, North-Eastern Federal University, 678170 Mirny, Russia.

出版信息

Molecules. 2024 Aug 10;29(16):3790. doi: 10.3390/molecules29163790.

Abstract

Nowadays, biodegradable metals and alloys, as well as their corrosion behavior, are of particular interest. The corrosion process of metals and alloys under various harsh conditions can be studied via the investigation of corrosion atom adsorption on metal surfaces. This can be performed using density functional theory-based simulations. Importantly, comprehensive analytical data obtained in simulations including parameters such as adsorption energy, the amount of charge transferred, atomic coordinates, etc., can be utilized in machine learning models to predict corrosion behavior, adsorption ability, catalytic activity, etc., of metals and alloys. In this work, data on the corrosion indicators of Zn surfaces in Cl-, S-, and O-rich harsh environments are collected. A dataset containing adsorption height, adsorption energy, partial density of states, work function values, and electronic charges of individual atoms is presented. In addition, based on these corrosion descriptors, it is found that a Cl-rich environment is less harmful for different Zn surfaces compared to an O-rich environment, and more harmful compared to a S-rich environment.

摘要

如今,可生物降解金属及合金及其腐蚀行为备受关注。通过研究金属表面腐蚀原子吸附情况,可对各种恶劣条件下金属及合金的腐蚀过程进行研究。这可利用基于密度泛函理论的模拟来实现。重要的是,模拟中获得的包括吸附能、电荷转移量、原子坐标等参数在内的综合分析数据,可用于机器学习模型,以预测金属及合金的腐蚀行为、吸附能力、催化活性等。在这项工作中,收集了锌表面在富含氯、硫和氧的恶劣环境中的腐蚀指标数据。给出了一个包含吸附高度、吸附能、态密度、功函数值和单个原子电荷的数据集。此外,基于这些腐蚀描述符发现,与富含氧的环境相比,富含氯的环境对不同锌表面的危害较小,而与富含硫的环境相比危害更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d54/11357478/0f6a9f878173/molecules-29-03790-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验