Suppr超能文献

机器学习在混合量子力学/分子力学计算中的潜力。

The potential for machine learning in hybrid QM/MM calculations.

机构信息

Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

School of Engineering, Brown University, Providence, Rhode Island 02912, USA.

出版信息

J Chem Phys. 2018 Jun 28;148(24):241740. doi: 10.1063/1.5029879.

Abstract

Hybrid quantum-mechanics/molecular-mechanics (QM/MM) simulations are popular tools for the simulation of extended atomistic systems, in which the atoms in a core region of interest are treated with a QM calculator and the surrounding atoms are treated with an empirical potential. Recently, a number of atomistic machine-learning (ML) tools have emerged that provide functional forms capable of reproducing the output of more expensive electronic-structure calculations; such ML tools are intriguing candidates for the MM calculator in QM/MM schemes. Here, we suggest that these ML potentials provide several natural advantages when employed in such a scheme. In particular, they may allow for newer, simpler QM/MM frameworks while also avoiding the need for extensive training sets to produce the ML potential. The drawbacks of employing ML potentials in QM/MM schemes are also outlined, which are primarily based on the added complexity to the algorithm of training and re-training ML models. Finally, two simple illustrative examples are provided which show the power of adding a retraining step to such "QM/ML" algorithms.

摘要

混合量子力学/分子力学 (QM/MM) 模拟是模拟扩展原子体系的流行工具,其中感兴趣的核心区域的原子用 QM 计算器处理,而周围的原子用经验势处理。最近,出现了一些原子机器学习 (ML) 工具,它们提供了能够再现更昂贵的电子结构计算输出的功能形式;此类 ML 工具是 QM/MM 方案中 MM 计算器的有趣候选者。在这里,我们认为这些 ML 势在这种方案中具有几个自然优势。特别是,它们可能允许使用更新、更简单的 QM/MM 框架,同时避免为生成 ML 势而需要大量训练集。还概述了在 QM/MM 方案中使用 ML 势的缺点,这些缺点主要基于训练和重新训练 ML 模型的算法增加的复杂性。最后,提供了两个简单的说明性示例,展示了向此类“QM/ML”算法添加重新训练步骤的强大功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验