Suppr超能文献

突触连接的冗余使神经元能够最优地学习。

Redundancy in synaptic connections enables neurons to learn optimally.

机构信息

Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, 351-0198 Saitama, Japan;

Gatsby Computational Neuroscience Unit, University College London, W1T 4JG London, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6871-E6879. doi: 10.1073/pnas.1803274115. Epub 2018 Jul 2.

Abstract

Recent experimental studies suggest that, in cortical microcircuits of the mammalian brain, the majority of neuron-to-neuron connections are realized by multiple synapses. However, it is not known whether such redundant synaptic connections provide any functional benefit. Here, we show that redundant synaptic connections enable near-optimal learning in cooperation with synaptic rewiring. By constructing a simple dendritic neuron model, we demonstrate that with multisynaptic connections synaptic plasticity approximates a sample-based Bayesian filtering algorithm known as particle filtering, and wiring plasticity implements its resampling process. Extending the proposed framework to a detailed single-neuron model of perceptual learning in the primary visual cortex, we show that the model accounts for many experimental observations. In particular, the proposed model reproduces the dendritic position dependence of spike-timing-dependent plasticity and the functional synaptic organization on the dendritic tree based on the stimulus selectivity of presynaptic neurons. Our study provides a conceptual framework for synaptic plasticity and rewiring.

摘要

最近的实验研究表明,在哺乳动物大脑的皮质微电路中,大多数神经元之间的连接是通过多个突触实现的。然而,目前尚不清楚这种冗余的突触连接是否提供任何功能上的好处。在这里,我们表明,冗余的突触连接通过与突触重连的合作,实现了近乎最优的学习。通过构建一个简单的树突神经元模型,我们证明了具有多突触连接的突触可塑性近似于一种基于样本的贝叶斯滤波算法,称为粒子滤波,而配线可塑性实现了其重采样过程。将所提出的框架扩展到初级视觉皮层中感知学习的详细单神经元模型,我们表明该模型解释了许多实验观察结果。特别是,该模型基于突触前神经元的刺激选择性,再现了基于树突位置的尖峰时间依赖可塑性和功能突触组织。我们的研究为突触可塑性和重连提供了一个概念框架。

相似文献

1
Redundancy in synaptic connections enables neurons to learn optimally.突触连接的冗余使神经元能够最优地学习。
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6871-E6879. doi: 10.1073/pnas.1803274115. Epub 2018 Jul 2.

引用本文的文献

3
Evolutionary learning in neural networks by heterosynaptic plasticity.通过异突触可塑性实现神经网络中的进化学习。
iScience. 2025 Apr 3;28(5):112340. doi: 10.1016/j.isci.2025.112340. eCollection 2025 May 16.
5
Model of the HVC neural network as a song motor in zebra finch.斑胸草雀中作为歌曲运动中枢的HVC神经网络模型。
Front Comput Neurosci. 2024 Nov 20;18:1417558. doi: 10.3389/fncom.2024.1417558. eCollection 2024.
10

本文引用的文献

1
Local Order within Global Disorder: Synaptic Architecture of Visual Space.全局无序中的局部秩序:视觉空间的突触结构
Neuron. 2017 Dec 6;96(5):1127-1138.e4. doi: 10.1016/j.neuron.2017.10.017. Epub 2017 Nov 2.
2
Axonal synapse sorting in medial entorhinal cortex.内侧隔核的轴突突触分类。
Nature. 2017 Sep 28;549(7673):469-475. doi: 10.1038/nature24005. Epub 2017 Sep 20.
4
Synaptic organization of visual space in primary visual cortex.初级视觉皮层中视觉空间的突触组织
Nature. 2017 Jul 27;547(7664):449-452. doi: 10.1038/nature23019. Epub 2017 Jul 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验