Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, 351-0198 Saitama, Japan;
Gatsby Computational Neuroscience Unit, University College London, W1T 4JG London, United Kingdom.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6871-E6879. doi: 10.1073/pnas.1803274115. Epub 2018 Jul 2.
Recent experimental studies suggest that, in cortical microcircuits of the mammalian brain, the majority of neuron-to-neuron connections are realized by multiple synapses. However, it is not known whether such redundant synaptic connections provide any functional benefit. Here, we show that redundant synaptic connections enable near-optimal learning in cooperation with synaptic rewiring. By constructing a simple dendritic neuron model, we demonstrate that with multisynaptic connections synaptic plasticity approximates a sample-based Bayesian filtering algorithm known as particle filtering, and wiring plasticity implements its resampling process. Extending the proposed framework to a detailed single-neuron model of perceptual learning in the primary visual cortex, we show that the model accounts for many experimental observations. In particular, the proposed model reproduces the dendritic position dependence of spike-timing-dependent plasticity and the functional synaptic organization on the dendritic tree based on the stimulus selectivity of presynaptic neurons. Our study provides a conceptual framework for synaptic plasticity and rewiring.
最近的实验研究表明,在哺乳动物大脑的皮质微电路中,大多数神经元之间的连接是通过多个突触实现的。然而,目前尚不清楚这种冗余的突触连接是否提供任何功能上的好处。在这里,我们表明,冗余的突触连接通过与突触重连的合作,实现了近乎最优的学习。通过构建一个简单的树突神经元模型,我们证明了具有多突触连接的突触可塑性近似于一种基于样本的贝叶斯滤波算法,称为粒子滤波,而配线可塑性实现了其重采样过程。将所提出的框架扩展到初级视觉皮层中感知学习的详细单神经元模型,我们表明该模型解释了许多实验观察结果。特别是,该模型基于突触前神经元的刺激选择性,再现了基于树突位置的尖峰时间依赖可塑性和功能突触组织。我们的研究为突触可塑性和重连提供了一个概念框架。