Suppr超能文献

突触连接的冗余使神经元能够最优地学习。

Redundancy in synaptic connections enables neurons to learn optimally.

机构信息

Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako, 351-0198 Saitama, Japan;

Gatsby Computational Neuroscience Unit, University College London, W1T 4JG London, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6871-E6879. doi: 10.1073/pnas.1803274115. Epub 2018 Jul 2.

Abstract

Recent experimental studies suggest that, in cortical microcircuits of the mammalian brain, the majority of neuron-to-neuron connections are realized by multiple synapses. However, it is not known whether such redundant synaptic connections provide any functional benefit. Here, we show that redundant synaptic connections enable near-optimal learning in cooperation with synaptic rewiring. By constructing a simple dendritic neuron model, we demonstrate that with multisynaptic connections synaptic plasticity approximates a sample-based Bayesian filtering algorithm known as particle filtering, and wiring plasticity implements its resampling process. Extending the proposed framework to a detailed single-neuron model of perceptual learning in the primary visual cortex, we show that the model accounts for many experimental observations. In particular, the proposed model reproduces the dendritic position dependence of spike-timing-dependent plasticity and the functional synaptic organization on the dendritic tree based on the stimulus selectivity of presynaptic neurons. Our study provides a conceptual framework for synaptic plasticity and rewiring.

摘要

最近的实验研究表明,在哺乳动物大脑的皮质微电路中,大多数神经元之间的连接是通过多个突触实现的。然而,目前尚不清楚这种冗余的突触连接是否提供任何功能上的好处。在这里,我们表明,冗余的突触连接通过与突触重连的合作,实现了近乎最优的学习。通过构建一个简单的树突神经元模型,我们证明了具有多突触连接的突触可塑性近似于一种基于样本的贝叶斯滤波算法,称为粒子滤波,而配线可塑性实现了其重采样过程。将所提出的框架扩展到初级视觉皮层中感知学习的详细单神经元模型,我们表明该模型解释了许多实验观察结果。特别是,该模型基于突触前神经元的刺激选择性,再现了基于树突位置的尖峰时间依赖可塑性和功能突触组织。我们的研究为突触可塑性和重连提供了一个概念框架。

相似文献

1
Redundancy in synaptic connections enables neurons to learn optimally.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6871-E6879. doi: 10.1073/pnas.1803274115. Epub 2018 Jul 2.
2
Multicontact Co-operativity in Spike-Timing-Dependent Structural Plasticity Stabilizes Networks.
Cereb Cortex. 2018 Apr 1;28(4):1396-1415. doi: 10.1093/cercor/bhx339.
3
Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.
Front Neural Circuits. 2016 May 31;10:41. doi: 10.3389/fncir.2016.00041. eCollection 2016.
4
Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
Nat Neurosci. 2000 Sep;3(9):919-26. doi: 10.1038/78829.
5
Spike-timing dependent synaptic plasticity: a phenomenological framework.
Biol Cybern. 2002 Dec;87(5-6):416-27. doi: 10.1007/s00422-002-0359-5.
6
Spike-timing-dependent plasticity for neurons with recurrent connections.
Biol Cybern. 2007 May;96(5):533-46. doi: 10.1007/s00422-007-0148-2. Epub 2007 Apr 6.
7
Spike timing-dependent synaptic plasticity in visual cortex: a modeling study.
J Comput Neurosci. 2005 Jan-Feb;18(1):25-39. doi: 10.1007/s10827-005-5475-5.
8
Learning by the dendritic prediction of somatic spiking.
Neuron. 2014 Feb 5;81(3):521-8. doi: 10.1016/j.neuron.2013.11.030.
9
What can a neuron learn with spike-timing-dependent plasticity?
Neural Comput. 2005 Nov;17(11):2337-82. doi: 10.1162/0899766054796888.
10

引用本文的文献

2
Parallel synapses with transmission nonlinearities enhance neuronal classification capacity.
PLoS Comput Biol. 2025 May 9;21(5):e1012285. doi: 10.1371/journal.pcbi.1012285. eCollection 2025 May.
3
Evolutionary learning in neural networks by heterosynaptic plasticity.
iScience. 2025 Apr 3;28(5):112340. doi: 10.1016/j.isci.2025.112340. eCollection 2025 May 16.
5
Model of the HVC neural network as a song motor in zebra finch.
Front Comput Neurosci. 2024 Nov 20;18:1417558. doi: 10.3389/fncom.2024.1417558. eCollection 2024.
6
Simulated synapse loss induces depression-like behaviors in deep reinforcement learning.
Front Comput Neurosci. 2024 Nov 6;18:1466364. doi: 10.3389/fncom.2024.1466364. eCollection 2024.
7
Asymmetry in synaptic connectivity balances redundancy and reachability in the connectome.
iScience. 2024 Aug 13;27(9):110713. doi: 10.1016/j.isci.2024.110713. eCollection 2024 Sep 20.
8
Parallel Synapses with Transmission Nonlinearities Enhance Neuronal Classification Capacity.
bioRxiv. 2024 Jul 4:2024.07.01.601490. doi: 10.1101/2024.07.01.601490.
10
Synchronization of delayed coupled neurons with multiple synaptic connections.
Cogn Neurodyn. 2024 Apr;18(2):631-643. doi: 10.1007/s11571-023-10013-9. Epub 2023 Nov 10.

本文引用的文献

1
Local Order within Global Disorder: Synaptic Architecture of Visual Space.
Neuron. 2017 Dec 6;96(5):1127-1138.e4. doi: 10.1016/j.neuron.2017.10.017. Epub 2017 Nov 2.
2
Axonal synapse sorting in medial entorhinal cortex.
Nature. 2017 Sep 28;549(7673):469-475. doi: 10.1038/nature24005. Epub 2017 Sep 20.
3
Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.
Neuron. 2017 Sep 27;96(1):177-189.e7. doi: 10.1016/j.neuron.2017.09.021.
4
Synaptic organization of visual space in primary visual cortex.
Nature. 2017 Jul 27;547(7664):449-452. doi: 10.1038/nature23019. Epub 2017 Jul 12.
5
Rich cell-type-specific network topology in neocortical microcircuitry.
Nat Neurosci. 2017 Jul;20(7):1004-1013. doi: 10.1038/nn.4576. Epub 2017 Jun 5.
6
Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex.
Neuron. 2016 Oct 19;92(2):530-543. doi: 10.1016/j.neuron.2016.09.038.
7
Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.
Front Neural Circuits. 2016 May 31;10:41. doi: 10.3389/fncir.2016.00041. eCollection 2016.
8
Evaluation of ambiguous associations in the amygdala by learning the structure of the environment.
Nat Neurosci. 2016 Jul;19(7):965-72. doi: 10.1038/nn.4308. Epub 2016 May 23.
9
Anatomy and function of an excitatory network in the visual cortex.
Nature. 2016 Apr 21;532(7599):370-4. doi: 10.1038/nature17192. Epub 2016 Mar 28.
10
Spiking neurons can discover predictive features by aggregate-label learning.
Science. 2016 Mar 4;351(6277):aab4113. doi: 10.1126/science.aab4113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验