Suppr超能文献

真核红树分解者的生理生态学和脂质动态。

Ecophysiology and lipid dynamics of a eukaryotic mangrove decomposer.

机构信息

Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, Grenoble Cedex 9, France.

出版信息

Environ Microbiol. 2018 Aug;20(8):3057-3068. doi: 10.1111/1462-2920.14346. Epub 2018 Sep 18.

Abstract

Aurantiochytrium limacinum is an osmo-heterotrophic Stramenopile and a pioneering mangrove decomposer which is taxonomically assigned to the family of Thraustochytriaceae (class: Labyrinthulomycetes). The life cycle of A. limacinum involves different cell types including mono- and multi-nucleated cells as well as flagellated zoospores which colonize new fallen leaves. The ecological relevance of thraustochytrids is underestimated and eclipsed by their biotechnological importance, due to their ability to accumulate large amount of lipids, mainly triacylglycerols (TAGs). In this study, we aimed to understand the ecophysiological parameters that trigger zoospore production and the interplay between the life cycle of A. limacinum and its lipid metabolism. When grown in a rich medium, cells accumulated large amounts of TAGs at the end of their growth period, but no zoospores were produced. In poor media such as artificial sea water, zoospores were produced in massive quantities. In the absence of organic carbon, the zoospores remained swimming for at least 6 days, consuming their TAGs in the process. Addition of glucose rapidly triggered the maturation of the zoospores. On the basis of these data, we propose a life cycle for A. limacinum integrating the potential perturbations/changes in the environment surrounding a mangrove leaf that could lead to the production of zoospores and colonization of new areas.

摘要

解甲藻是一种兼性异养的褐藻,是一种先驱性的红树林分解者,在分类上属于旋壳虫科(类:Labyrinthulomycetes)。解甲藻的生命周期涉及不同的细胞类型,包括单核和多核细胞以及鞭毛游动孢子,这些游动孢子定植在新落下的叶子上。由于旋壳虫具有积累大量脂质(主要是三酰基甘油(TAGs))的能力,它们的生物技术重要性掩盖了其被低估的生态相关性。在这项研究中,我们旨在了解触发游动孢子产生的生理生态参数,以及解甲藻生命周期与其脂质代谢之间的相互作用。当在富营养培养基中生长时,细胞在生长末期积累了大量的 TAG,但没有产生游动孢子。在贫营养培养基(如人工海水)中,会大量产生游动孢子。在没有有机碳的情况下,游动孢子至少可以游动 6 天,在此过程中消耗它们的 TAG。添加葡萄糖会迅速触发游动孢子的成熟。基于这些数据,我们提出了一个整合了红树林叶片周围潜在环境干扰/变化的解甲藻生命周期模型,这可能导致游动孢子的产生和新区域的定植。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验