MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Université Grenoble Alpes, Institut de Recherche Interdisciplinaire de Grenoble, Grenoble, France.
Results Probl Cell Differ. 2020;69:281-334. doi: 10.1007/978-3-030-51849-3_11.
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
膜区室是从原核生物到真核生物的细胞进化最迷人的标志之一,其中一些是保守的,而另一些则是通过一系列原始和二次内共生事件出现的。膜区室包括限制细胞的系统(细菌中有一个或两个膜,真核生物中有一个独特的质膜)和各种内部囊泡、亚球形、管状或网状细胞器。在真核生物中,内部膜一方面包括一般的内膜系统,这是一个动态的网络,包括内质网、高尔基体、核膜等细胞器,以及通过直接横向连接(例如内质网和核外膜之间)或通过囊泡运输间接连接的质膜。另一方面,半自主细胞器,即线粒体和叶绿体,与内膜系统断开,要求在细胞分裂后进行垂直传递。膜以双层脂质的形式组织,其中嵌入蛋白质。其中一些膜的出芽,导致所谓的脂滴(LDs)的形成,这些 LD 装载有疏水分子,最显著的是三酰甘油,在所有进化枝中都是保守的。真核生物的进化标志是通过原始内共生事件从革兰氏阳性细菌获得线粒体和简单质体,以及通过多次独立的二次内共生事件出现的极其复杂的质体,统称为二次质体,由三到四个膜所包围。目前,在生命之树上对 LD 的进化还没有共识。一些特征是保守的;其他特征则显示出惊人的多样化程度。在这里,我们总结了目前关于原核生物和通过原始和二次内共生事件衍生的真核生物中脂滴的结构、动态和多种功能的知识。