Suppr超能文献

应用机器学习预测机器人辅助前列腺切除术术后早期生化复发。

Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy.

机构信息

Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada.

出版信息

BJU Int. 2019 Jan;123(1):51-57. doi: 10.1111/bju.14477. Epub 2018 Aug 5.

Abstract

OBJECTIVES

To train and compare machine-learning algorithms with traditional regression analysis for the prediction of early biochemical recurrence after robot-assisted prostatectomy.

PATIENTS AND METHODS

A prospectively collected dataset of 338 patients who underwent robot-assisted prostatectomy for localized prostate cancer was examined. We used three supervised machine-learning algorithms and 19 different training variables (demographic, clinical, imaging and operative data) in a hypothesis-free manner to build models that could predict patients with biochemical recurrence at 1 year. We also performed traditional Cox regression analysis for comparison.

RESULTS

K-nearest neighbour, logistic regression and random forest classifier were used as machine-learning models. Classic Cox regression analysis had an area under the curve (AUC) of 0.865 for the prediction of biochemical recurrence. All three of our machine-learning models (K-nearest neighbour (AUC 0.903), random forest tree (AUC 0.924) and logistic regression (AUC 0.940) outperformed the conventional statistical regression model. Accuracy prediction scores for K-nearest neighbour, random forest tree and logistic regression were 0.976, 0.953 and 0.976, respectively.

CONCLUSIONS

Machine-learning techniques can produce accurate disease predictability better that traditional statistical regression. These tools may prove clinically useful for the automated prediction of patients who develop early biochemical recurrence after robot-assisted prostatectomy. For these patients, appropriate individualized treatment options can improve outcomes and quality of life.

摘要

目的

训练并比较机器学习算法与传统回归分析,以预测机器人辅助前列腺切除术后早期生化复发。

方法

我们检查了 338 名接受机器人辅助前列腺切除术治疗局限性前列腺癌的前瞻性收集数据集。我们以无假设的方式使用三种监督机器学习算法和 19 种不同的训练变量(人口统计学、临床、影像学和手术数据)来构建可以预测 1 年内生化复发的模型。我们还进行了传统的 Cox 回归分析进行比较。

结果

K-最近邻、逻辑回归和随机森林分类器被用作机器学习模型。经典 Cox 回归分析对生化复发的预测的曲线下面积(AUC)为 0.865。我们的三种机器学习模型(K-最近邻(AUC 0.903)、随机森林树(AUC 0.924)和逻辑回归(AUC 0.940)均优于传统的统计回归模型。K-最近邻、随机森林树和逻辑回归的准确性预测评分分别为 0.976、0.953 和 0.976。

结论

机器学习技术可以产生比传统统计回归更准确的疾病预测能力。这些工具可能对机器人辅助前列腺切除术后早期生化复发患者的自动预测具有临床实用价值。对于这些患者,适当的个体化治疗方案可以改善结局和生活质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验