Suppr超能文献

体内相互正交的DNA复制系统。

Mutually Orthogonal DNA Replication Systems In Vivo.

作者信息

Arzumanyan Garri A, Gabriel Kristin N, Ravikumar Arjun, Javanpour Alex A, Liu Chang C

机构信息

Department of Biomedical Engineering , University of California , Irvine , California 92697 , United States.

Department of Molecular Biology & Biochemistry , University of California , Irvine , California 92697 , United States.

出版信息

ACS Synth Biol. 2018 Jul 20;7(7):1722-1729. doi: 10.1021/acssynbio.8b00195. Epub 2018 Jul 10.

Abstract

The yeast cytoplasmically localized pGKL1/TP-DNAP1 plasmid/DNA polymerase pair forms an orthogonal DNA replication system whose mutation rate can be drastically increased without influencing genomic replication, thereby supporting in vivo continuous evolution. Here, we report that the pGKL2/TP-DNAP2 plasmid/DNA polymerase pair forms a second orthogonal replication system. We show that custom genes can be encoded and expressed from pGKL2, that error-prone TP-DNAP2s can be engineered, and that pGKL2 replication by TP-DNAP2 is both orthogonal to genomic replication in Saccharomyces cerevisiae and mutually orthogonal with pGKL1 replication by TP-DNAP1. This demonstration of two mutually orthogonal DNA replication systems with tunable error rates and properties should enable new applications in cell-based continuous evolution, genetic recording, and synthetic biology at large.

摘要

酵母细胞质定位的pGKL1/TP-DNAP1质粒/DNA聚合酶对形成了一个正交DNA复制系统,其突变率可以在不影响基因组复制的情况下大幅提高,从而支持体内连续进化。在此,我们报告pGKL2/TP-DNAP2质粒/DNA聚合酶对形成了第二个正交复制系统。我们表明,可以从pGKL2编码并表达定制基因,可以设计易错的TP-DNAP2,并且TP-DNAP2介导的pGKL2复制在酿酒酵母中既与基因组复制正交,又与TP-DNAP1介导的pGKL1复制相互正交。这两个具有可调错误率和特性的相互正交DNA复制系统的证明应该能够在基于细胞的连续进化、遗传记录以及整个合成生物学中实现新的应用。

相似文献

1
Mutually Orthogonal DNA Replication Systems In Vivo.体内相互正交的DNA复制系统。
ACS Synth Biol. 2018 Jul 20;7(7):1722-1729. doi: 10.1021/acssynbio.8b00195. Epub 2018 Jul 10.
2
An orthogonal DNA replication system in yeast.酵母中的正交 DNA 复制系统。
Nat Chem Biol. 2014 Mar;10(3):175-7. doi: 10.1038/nchembio.1439. Epub 2014 Feb 2.
4
Tunable Expression Systems for Orthogonal DNA Replication.用于正交DNA复制的可调表达系统。
ACS Synth Biol. 2018 Dec 21;7(12):2930-2934. doi: 10.1021/acssynbio.8b00400. Epub 2018 Nov 16.
6
Genetic Compatibility and Extensibility of Orthogonal Replication.正交复制的遗传兼容性与扩展性
ACS Synth Biol. 2019 Jun 21;8(6):1249-1256. doi: 10.1021/acssynbio.9b00122. Epub 2019 May 22.

引用本文的文献

1
In vivo hypermutation and continuous evolution.体内超突变与持续进化。
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00130-w. Epub 2022 May 19.
6
Reprogramming the genetic code.重编程基因密码。
Nat Rev Genet. 2021 Mar;22(3):169-184. doi: 10.1038/s41576-020-00307-7. Epub 2020 Dec 14.
7
Synthetic Biological Circuits within an Orthogonal Central Dogma.正交中心法则内的合成生物学电路。
Trends Biotechnol. 2021 Jan;39(1):59-71. doi: 10.1016/j.tibtech.2020.05.013. Epub 2020 Jun 22.
9
Genetic Compatibility and Extensibility of Orthogonal Replication.正交复制的遗传兼容性与扩展性
ACS Synth Biol. 2019 Jun 21;8(6):1249-1256. doi: 10.1021/acssynbio.9b00122. Epub 2019 May 22.

本文引用的文献

3
Comparing mutation rates under the Luria-Delbrück protocol.比较卢里亚-德尔布吕克实验方案下的突变率。
Genetica. 2016 Jun;144(3):351-9. doi: 10.1007/s10709-016-9904-3. Epub 2016 May 17.
4
Biocontainment through reengineered genetic codes.通过重新设计的遗传密码实现生物遏制。
Chembiochem. 2015 May 26;16(8):1149-51. doi: 10.1002/cbic.201500157. Epub 2015 Apr 27.
5
Catalysts from synthetic genetic polymers.合成遗传聚合物催化剂。
Nature. 2015 Feb 19;518(7539):427-30. doi: 10.1038/nature13982. Epub 2014 Dec 1.
7
A semi-synthetic organism with an expanded genetic alphabet.具有扩展遗传字母表的半合成生物体。
Nature. 2014 May 15;509(7500):385-8. doi: 10.1038/nature13314. Epub 2014 May 7.
8
An orthogonal DNA replication system in yeast.酵母中的正交 DNA 复制系统。
Nat Chem Biol. 2014 Mar;10(3):175-7. doi: 10.1038/nchembio.1439. Epub 2014 Feb 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验