Suppr超能文献

正交中心法则内的合成生物学电路。

Synthetic Biological Circuits within an Orthogonal Central Dogma.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.

Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.

出版信息

Trends Biotechnol. 2021 Jan;39(1):59-71. doi: 10.1016/j.tibtech.2020.05.013. Epub 2020 Jun 22.

Abstract

Synthetic biology strives to reliably control cellular behavior, typically in the form of user-designed interactions of biological components to produce a predetermined output. Engineered circuit components are frequently derived from natural sources and are therefore often hampered by inadvertent interactions with host machinery, most notably within the host central dogma. Reliable and predictable gene circuits require the targeted reduction or elimination of these undesirable interactions to mitigate negative consequences on host fitness and develop context-independent bioactivities. Here, we review recent advances in biological orthogonalization, namely the insulation of researcher-dictated bioactivities from host processes, with a focus on systematic developments that may culminate in the creation of an orthogonal central dogma and novel cellular functions.

摘要

合成生物学致力于可靠地控制细胞行为,通常以用户设计的生物组件相互作用的形式来产生预定的输出。工程化的电路组件通常源自天然来源,因此经常受到与宿主机制的意外相互作用的阻碍,尤其是在宿主中心法则内。可靠和可预测的基因电路需要有针对性地减少或消除这些不理想的相互作用,以减轻对宿主适应性的负面影响,并开发与上下文无关的生物活性。在这里,我们回顾了生物正交化的最新进展,即研究人员规定的生物活性与宿主过程的隔离,重点介绍了可能最终导致创建正交中心法则和新型细胞功能的系统发展。

相似文献

1
Synthetic Biological Circuits within an Orthogonal Central Dogma.正交中心法则内的合成生物学电路。
Trends Biotechnol. 2021 Jan;39(1):59-71. doi: 10.1016/j.tibtech.2020.05.013. Epub 2020 Jun 22.
2
Engineering synthetic regulatory circuits in plants.在植物中工程合成调控回路。
Plant Sci. 2018 Aug;273:13-22. doi: 10.1016/j.plantsci.2018.04.005. Epub 2018 Apr 11.
3
Synthetic genetic circuits for programmable biological functionalities.用于可编程生物功能的合成遗传电路。
Biotechnol Adv. 2019 Nov 1;37(6):107393. doi: 10.1016/j.biotechadv.2019.04.015. Epub 2019 Apr 30.
4
Machine learning for synthetic gene circuit engineering.用于合成基因电路工程的机器学习
Curr Opin Biotechnol. 2025 Apr;92:103263. doi: 10.1016/j.copbio.2025.103263. Epub 2025 Jan 27.
6
Context-dependent redesign of robust synthetic gene circuits.上下文相关的稳健合成基因电路的重新设计。
Trends Biotechnol. 2024 Jul;42(7):895-909. doi: 10.1016/j.tibtech.2024.01.003. Epub 2024 Feb 5.
7
Addressing biological uncertainties in engineering gene circuits.解决工程基因回路中的生物学不确定性问题。
Integr Biol (Camb). 2016 Apr 18;8(4):456-64. doi: 10.1039/c5ib00275c. Epub 2015 Dec 17.
8
Tools and Principles for Microbial Gene Circuit Engineering.微生物基因电路工程的工具和原理。
J Mol Biol. 2016 Feb 27;428(5 Pt B):862-88. doi: 10.1016/j.jmb.2015.10.004. Epub 2015 Oct 20.
9
Engineering living therapeutics with synthetic biology.用合成生物学设计活体治疗药物。
Nat Rev Drug Discov. 2021 Dec;20(12):941-960. doi: 10.1038/s41573-021-00285-3. Epub 2021 Oct 6.

引用本文的文献

6
Synthetic gene circuit evolution: Insights and opportunities at the mid-scale.合成基因回路进化:中尺度的见解和机遇。
Cell Chem Biol. 2024 Aug 15;31(8):1447-1459. doi: 10.1016/j.chembiol.2024.05.018. Epub 2024 Jun 25.
8
A Genetic Circuit Design for Targeted Viral RNA Degradation.一种用于靶向病毒RNA降解的基因电路设计。
Bioengineering (Basel). 2023 Dec 25;11(1):22. doi: 10.3390/bioengineering11010022.

本文引用的文献

1
Automated Continuous Evolution of Proteins .蛋白质的自动连续进化
ACS Synth Biol. 2020 Jun 19;9(6):1270-1276. doi: 10.1021/acssynbio.0c00135. Epub 2020 May 12.
4
De novo design of protein logic gates.从头设计蛋白质逻辑门。
Science. 2020 Apr 3;368(6486):78-84. doi: 10.1126/science.aay2790.
5
Modular Analysis and Design of Biological Circuits.生物电路的模块化分析与设计。
Curr Opin Biotechnol. 2020 Jun;63:41-47. doi: 10.1016/j.copbio.2019.11.015. Epub 2019 Dec 24.
6
Strategies for in vitro engineering of the translation machinery.体外翻译机制的工程策略。
Nucleic Acids Res. 2020 Feb 20;48(3):1068-1083. doi: 10.1093/nar/gkz1011.
8
Bacterial RNA Degradosomes: Molecular Machines under Tight Control.细菌 RNA 降解体:严格调控下的分子机器
Trends Biochem Sci. 2020 Jan;45(1):42-57. doi: 10.1016/j.tibs.2019.10.002. Epub 2019 Nov 1.
9
Reading, writing and erasing mRNA methylation.阅读、书写和擦除 mRNA 甲基化。
Nat Rev Mol Cell Biol. 2019 Oct;20(10):608-624. doi: 10.1038/s41580-019-0168-5. Epub 2019 Sep 13.
10
Gene networks that compensate for crosstalk with crosstalk.基因网络通过串扰进行补偿。
Nat Commun. 2019 Sep 6;10(1):4028. doi: 10.1038/s41467-019-12021-y.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验