Suppr超能文献

正交复制的遗传兼容性与扩展性

Genetic Compatibility and Extensibility of Orthogonal Replication.

作者信息

Javanpour Alex A, Liu Chang C

机构信息

Department of Biomedical Engineering , University of California , Irvine , California 92697 , United States.

Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States.

出版信息

ACS Synth Biol. 2019 Jun 21;8(6):1249-1256. doi: 10.1021/acssynbio.9b00122. Epub 2019 May 22.

Abstract

We recently developed an orthogonal replication system (OrthoRep) in yeast that allows for the rapid continuous mutagenesis of a special plasmid without mutating the genome. Although OrthoRep has been successfully applied to evolve several proteins and enzymes, the generality of OrthoRep has not yet been systematically studied. Here, we show that OrthoRep is fully compatible with all Saccharomyces cerevisiae strains tested, demonstrate that the orthogonal plasmid can encode genetic material of at least 22 kb, and report a CRISPR/Cas9-based method for expedient genetic manipulations of OrthoRep. It was previously reported that the replication system upon which OrthoRep is based is only stable in respiration-deficient S. cerevisiae strains that have lost their mitochondrial genome (ρ strains). However, here we trace this biological incompatibility to the activity of the dispensable toxin/antitoxin system encoded on the wild-type orthogonal plasmid. Since the toxin/antitoxin system is replaced by genes of interest in any OrthoRep application, OrthoRep is a generally compatible platform for continuous in vivo evolution in S. cerevisiae.

摘要

我们最近在酵母中开发了一种正交复制系统(OrthoRep),该系统能够在不使基因组发生突变的情况下对特定质粒进行快速连续诱变。尽管OrthoRep已成功应用于多种蛋白质和酶的进化研究,但尚未对其通用性进行系统研究。在此,我们表明OrthoRep与所有测试的酿酒酵母菌株完全兼容,证明正交质粒能够编码至少22 kb的遗传物质,并报告了一种基于CRISPR/Cas9的方法,用于对OrthoRep进行便捷的基因操作。此前有报道称,OrthoRep所基于的复制系统仅在缺失线粒体基因组的呼吸缺陷型酿酒酵母菌株(ρ菌株)中稳定。然而,我们在此发现,这种生物学不兼容性源于野生型正交质粒上编码的可有可无的毒素/抗毒素系统的活性。由于在任何OrthoRep应用中,毒素/抗毒素系统都被感兴趣的基因所取代,因此OrthoRep是酿酒酵母中进行连续体内进化的通用兼容平台。

相似文献

1
Genetic Compatibility and Extensibility of Orthogonal Replication.
ACS Synth Biol. 2019 Jun 21;8(6):1249-1256. doi: 10.1021/acssynbio.9b00122. Epub 2019 May 22.
2
Tunable Expression Systems for Orthogonal DNA Replication.
ACS Synth Biol. 2018 Dec 21;7(12):2930-2934. doi: 10.1021/acssynbio.8b00400. Epub 2018 Nov 16.
3
In vitro CRISPR-Cas9-mediated efficient Ad5 vector modification.
Biochem Biophys Res Commun. 2016 May 27;474(2):395-399. doi: 10.1016/j.bbrc.2016.04.129. Epub 2016 Apr 26.
5
Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
mBio. 2018 Sep 25;9(5):e01410-18. doi: 10.1128/mBio.01410-18.
6
Plasmid-free CRISPR/Cas9 genome editing in Saccharomyces cerevisiae.
Biosci Biotechnol Biochem. 2023 Mar 21;87(4):458-462. doi: 10.1093/bbb/zbad008.
7
Engineered bacterial orthogonal DNA replication system for continuous evolution.
Nat Chem Biol. 2023 Dec;19(12):1504-1512. doi: 10.1038/s41589-023-01387-2. Epub 2023 Jul 13.
8
Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
J Microbiol Methods. 2016 Aug;127:203-205. doi: 10.1016/j.mimet.2016.06.020. Epub 2016 Jun 17.
9
Mutually Orthogonal DNA Replication Systems In Vivo.
ACS Synth Biol. 2018 Jul 20;7(7):1722-1729. doi: 10.1021/acssynbio.8b00195. Epub 2018 Jul 10.
10
Rapidly Inducible Yeast Surface Display for Antibody Evolution with OrthoRep.
ACS Synth Biol. 2024 Aug 16;13(8):2629-2634. doi: 10.1021/acssynbio.4c00370. Epub 2024 Jul 25.

引用本文的文献

1
The role of plasmid copy number and mutation rate in evolutionary outcomes.
Nat Ecol Evol. 2025 Jul 14. doi: 10.1038/s41559-025-02792-7.
3
Enhancing prime editor activity by directed protein evolution in yeast.
Nat Commun. 2024 Mar 7;15(1):2092. doi: 10.1038/s41467-024-46107-z.
4
In vivo hypermutation and continuous evolution.
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00130-w. Epub 2022 May 19.
5
Evolving Small-Molecule Biosensors with Improved Performance and Reprogrammed Ligand Preference Using OrthoRep.
ACS Synth Biol. 2021 Oct 15;10(10):2705-2714. doi: 10.1021/acssynbio.1c00316. Epub 2021 Oct 1.
6
Phage-assisted continuous and non-continuous evolution.
Nat Protoc. 2020 Dec;15(12):4101-4127. doi: 10.1038/s41596-020-00410-3. Epub 2020 Nov 16.
7
Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study.
Life (Basel). 2020 Sep 5;10(9):179. doi: 10.3390/life10090179.
8
Synthetic Biological Circuits within an Orthogonal Central Dogma.
Trends Biotechnol. 2021 Jan;39(1):59-71. doi: 10.1016/j.tibtech.2020.05.013. Epub 2020 Jun 22.

本文引用的文献

1
Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds.
Cell. 2018 Dec 13;175(7):1946-1957.e13. doi: 10.1016/j.cell.2018.10.021. Epub 2018 Nov 8.
2
Mutually Orthogonal DNA Replication Systems In Vivo.
ACS Synth Biol. 2018 Jul 20;7(7):1722-1729. doi: 10.1021/acssynbio.8b00195. Epub 2018 Jul 10.
4
Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution.
Nat Rev Microbiol. 2015 Feb;13(2):105-15. doi: 10.1038/nrmicro3389. Epub 2014 Dec 22.
5
Multiplex engineering of industrial yeast genomes using CRISPRm.
Methods Enzymol. 2014;546:473-89. doi: 10.1016/B978-0-12-801185-0.00023-4.
6
Selection of chromosomal DNA libraries using a multiplex CRISPR system.
Elife. 2014 Aug 19;3:e03703. doi: 10.7554/eLife.03703.
7
An orthogonal DNA replication system in yeast.
Nat Chem Biol. 2014 Mar;10(3):175-7. doi: 10.1038/nchembio.1439. Epub 2014 Feb 2.
8
DNA replication error-induced extinction of diploid yeast.
Genetics. 2014 Mar;196(3):677-91. doi: 10.1534/genetics.113.160960. Epub 2014 Jan 3.
9
Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis.
Bioinformatics. 2009 Jun 15;25(12):1564-5. doi: 10.1093/bioinformatics/btp253. Epub 2009 Apr 15.
10
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Nat Methods. 2009 May;6(5):343-5. doi: 10.1038/nmeth.1318. Epub 2009 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验