Suppr超能文献

虚拟现实环境中医学图像的交互式人工智能标注

Interactive AI annotation of medical images in a virtual reality environment.

作者信息

Orsmaa Lotta, Saukkoriipi Mikko, Kangas Jari, Rasouli Nastaran, Järnstedt Jorma, Mehtonen Helena, Sahlsten Jaakko, Jaskari Joel, Kaski Kimmo, Raisamo Roope

机构信息

Faculty of Information Technology and Communication Sciences, Tampere University, Kalevantie 4, 33014, Tampere, Finland.

Department of Computer Science, Aalto University School of Science, Otakaari 1B, 00076, Espoo, Finland.

出版信息

Int J Comput Assist Radiol Surg. 2025 Aug 18. doi: 10.1007/s11548-025-03497-9.

Abstract

PURPOSE

Artificial intelligence (AI) achieves high-quality annotations of radiological images, yet often lacks the robustness required in clinical practice. Interactive annotation starts with an AI-generated delineation, allowing radiologists to refine it with feedback, potentially improving precision and reliability. These techniques have been explored in two-dimensional desktop environments, but are not validated by radiologists or integrated with immersive visualization technologies. We used a Virtual Reality (VR) system to determine whether (1) the annotation quality improves when radiologists can edit the AI annotation and (2) whether the extra work done by editing is worthwhile.

METHODS

We evaluated the clinical feasibility of an interactive VR approach to annotate mandibular and mental foramina on segmented 3D mandibular models. Three experienced dentomaxillofacial radiologists reviewed AI-generated annotations and, when needed, refined them at the voxel level in 3D space through click-based interactions until clinical standards were met.

RESULTS

Our results indicate that integrating expert feedback within an immersive VR environment enhances annotation accuracy, improves clinical usability, and offers valuable insights for developing medical image analysis systems incorporating radiologist input.

CONCLUSION

This study is the first to compare the quality of original and interactive AI annotation and to use radiologists' opinions as the measure. More research is needed for generalization.

摘要

目的

人工智能(AI)可实现高质量的放射图像标注,但往往缺乏临床实践所需的稳健性。交互式标注从人工智能生成的轮廓开始,使放射科医生能够通过反馈对其进行完善,这有可能提高精度和可靠性。这些技术已在二维桌面环境中进行了探索,但尚未得到放射科医生的验证,也未与沉浸式可视化技术集成。我们使用虚拟现实(VR)系统来确定:(1)当放射科医生能够编辑人工智能标注时,标注质量是否会提高;(2)通过编辑所做的额外工作是否值得。

方法

我们评估了一种交互式VR方法在分段3D下颌模型上标注下颌孔和颏孔的临床可行性。三位经验丰富的口腔颌面放射科医生审查了人工智能生成的标注,并在需要时通过基于点击的交互在3D空间的体素级别对其进行完善,直至达到临床标准。

结果

我们的结果表明,在沉浸式VR环境中整合专家反馈可提高标注准确性、改善临床可用性,并为开发纳入放射科医生输入的医学图像分析系统提供有价值的见解。

结论

本研究首次比较了原始和交互式人工智能标注的质量,并将放射科医生的意见作为衡量标准。需要更多研究来进行推广。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验