Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.
Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA.
mBio. 2018 Jul 3;9(4):e00898-18. doi: 10.1128/mBio.00898-18.
Human parainfluenza viruses cause a large burden of human respiratory illness. While much research relies upon viruses grown in cultured immortalized cells, human parainfluenza virus 3 (HPIV-3) evolves in culture. Cultured viruses differ in their properties compared to clinical strains. We present a genome-wide survey of HPIV-3 adaptations to culture using metagenomic next-generation sequencing of matched pairs of clinical samples and primary culture isolates (zero passage virus). Nonsynonymous changes arose during primary viral isolation, almost entirely in the genes encoding the two surface glycoproteins-the receptor binding protein hemagglutinin-neuraminidase (HN) or the fusion protein (F). We recovered genomes from 95 HPIV-3 primary culture isolates and 23 HPIV-3 strains directly from clinical samples. HN mutations arising during primary viral isolation resulted in substitutions at HN's dimerization/F-interaction site, a site critical for activation of viral fusion. Alterations in HN dimer interface residues known to favor infection in culture occurred within 4 days (H552 and N556). A novel cluster of residues at a different face of the HN dimer interface emerged (P241 and R242) and imply a role in HPIV-3-mediated fusion. Functional characterization of these culture-associated HN mutations in a clinical isolate background revealed acquisition of the fusogenic phenotype associated with cultured HPIV-3; the HN-F complex showed enhanced fusion and decreased receptor-cleaving activity. These results utilize a method for identifying genome-wide changes associated with brief adaptation to culture to highlight the notion that even brief exposure to immortalized cells may affect key viral properties and underscore the balance of features of the HN-F complex required for fitness by circulating viruses. Human parainfluenza virus 3 is an important cause of morbidity and mortality among infants, the immunocompromised, and the elderly. Using deep genomic sequencing of HPIV-3-positive clinical material and its subsequent viral isolate, we discover a number of known and novel coding mutations in the main HPIV-3 attachment protein HN during brief exposure to immortalized cells. These mutations significantly alter function of the fusion complex, increasing fusion promotion by HN as well as generally decreasing neuraminidase activity and increasing HN-receptor engagement. These results show that viruses may evolve rapidly in culture even during primary isolation of the virus and before the first passage and reveal features of fitness for humans that are obscured by rapid adaptation to laboratory conditions.
人类副流感病毒会导致大量的人类呼吸道疾病。虽然许多研究依赖于在培养的永生化细胞中生长的病毒,但人类副流感病毒 3(HPIV-3)在培养中进化。与临床株相比,培养的病毒在性质上有所不同。我们使用配对的临床样本和原代培养分离物(零传代病毒)的宏基因组下一代测序对 HPIV-3 适应培养进行了全基因组调查。非同义变化发生在原发性病毒分离过程中,几乎完全发生在编码两种表面糖蛋白-受体结合蛋白血凝素神经氨酸酶(HN)或融合蛋白(F)的基因中。我们从 95 株 HPIV-3 原代培养分离物和 23 株直接从临床样本中分离的 HPIV-3 株中回收了基因组。在原发性病毒分离过程中产生的 HN 突变导致 HN 的二聚体/F-相互作用位点发生取代,该位点对于病毒融合的激活至关重要。HN 二聚体界面上已知有利于培养感染的改变残基在 4 天内发生(H552 和 N556)。HN 二聚体界面上出现了一个不同的新残基簇(P241 和 R242),暗示在 HPIV-3 介导的融合中起作用。在临床分离株背景下对这些与培养相关的 HN 突变进行功能表征表明,获得了与培养的 HPIV-3 相关的融合表型;HN-F 复合物显示出增强的融合和降低的受体切割活性。这些结果利用一种识别与短暂适应培养相关的全基因组变化的方法,突出了即使是短暂接触永生化细胞也可能影响关键病毒特性的观点,并强调了循环病毒适应需要的 HN-F 复合物特征之间的平衡。人类副流感病毒 3 是婴儿、免疫功能低下者和老年人发病率和死亡率的重要原因。我们使用 HPIV-3 阳性临床标本的深度基因组测序及其随后的病毒分离物,发现了在短暂暴露于永生化细胞过程中,主要的 HPIV-3 附着蛋白 HN 中的许多已知和新的编码突变。这些突变显著改变了融合复合物的功能,增加了 HN 对融合的促进作用,同时普遍降低了神经氨酸酶活性并增加了 HN-受体结合。这些结果表明,病毒即使在病毒的初次分离和第一次传代之前也可能在培养中迅速进化,并揭示了被实验室条件快速适应所掩盖的对人类的适应性特征。