Keller Nicholas, delToro Damian J, Smith Douglas E
Department of Physics, University of California San Diego, La Jolla, CA, USA.
Methods Mol Biol. 2018;1805:393-422. doi: 10.1007/978-1-4939-8556-2_20.
Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a preformed prohead shell in ~5 min at room temperature. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers. Three viral packaging systems are described in detail: bacteriophages phi29 (φ29), lambda (λ), and T4. Two different approaches are described: (1) With φ29 and T4, prohead-motor complexes can be preassembled in bulk and packaging can be initiated in the optical tweezers by "feeding" a single DNA molecule to one of the complexes; (2) With φ29 and λ, packaging can be initiated in bulk then stalled, and a single prohead-motor-DNA complex can then be captured with optical tweezers and restarted. In both cases, the prohead is ultimately attached to one trapped microsphere and the end of the DNA being packaged is attached to a second trapped microsphere such that packaging of the DNA pulls the two microspheres together and the rate of packaging and force generated by the motor is directly measured in real time. These protocols allow for the effect of many experimental parameters on packaging dynamics to be studied such as temperature, ATP concentration, ionic conditions, structural changes to the DNA substrate, and mutations in the motor proteins. Procedures for capturing microspheres with the optical traps and different measurement modes are also described.
病毒DNA包装是许多双链DNA病毒组装过程中的一个必要步骤。由ATP水解驱动的分子马达在室温下约5分钟内将病毒基因组包装到预先形成的原头部外壳内,使其达到接近晶体的密度。我们描述了用光学镊子测量单个DNA分子包装到单个病毒原头部的方法。详细介绍了三种病毒包装系统:噬菌体φ29、λ和T4。描述了两种不同的方法:(1)对于φ29和T4,可以大量预组装原头部-马达复合物,并通过将单个DNA分子“喂入”其中一个复合物来在光学镊子中启动包装;(2)对于φ29和λ,可以在大量情况下启动包装然后使其停滞,然后用光学镊子捕获单个原头部-马达-DNA复合物并重新启动。在这两种情况下,原头部最终附着在一个捕获的微球上,正在被包装的DNA的末端附着在第二个捕获的微球上,这样DNA的包装就会将两个微球拉到一起,并且可以实时直接测量包装速率和马达产生的力。这些方案允许研究许多实验参数对包装动力学的影响,如温度、ATP浓度、离子条件、DNA底物的结构变化以及马达蛋白的突变。还描述了用光学陷阱捕获微球的方法和不同的测量模式。