Suppr超能文献

磁诱导电场与神经元的耦合:纵向和横向激活。

Coupling Magnetically Induced Electric Fields to Neurons: Longitudinal and Transverse Activation.

机构信息

Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina.

Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; Department of Neurosurgery, Duke University, Durham, North Carolina.

出版信息

Biophys J. 2018 Jul 3;115(1):95-107. doi: 10.1016/j.bpj.2018.06.004.

Abstract

We present a theory and computational models to couple the electric field induced by magnetic stimulation to neuronal membranes. Based on the characteristics of magnetically induced electric fields and the modified cable equation that we developed previously, quasipotentials are derived as a simple and accurate approximation for coupling of the electric fields to neurons. The conventional and modified cable equations are used to simulate magnetic stimulation of long peripheral nerves by circular and figure-8 coils. Activation thresholds are obtained over a range of lateral and vertical coil positions for two nonlinear membrane models representing unmyelinated and myelinated straight axons and also for undulating myelinated axons. For unmyelinated straight axons, the thresholds obtained with the modified cable equation are significantly lower due to transverse polarization, and the spatial distributions of thresholds as a function of coil position differ significantly from predictions by the activating function. However, the activation thresholds of unmyelinated axons obtained with either cable equation are very high and beyond the output capabilities of conventional magnetic stimulators. For myelinated axons, threshold values are similar for both cable equations and within the range of magnetic stimulators. Whereas the transverse field contributes negligibly to the activation thresholds of myelinated fibers, axonal undulation can significantly increase or decrease thresholds depending on coil position. The analysis provides a rigorous theoretical foundation and implementation methods for the use of the cable equation to model neuronal response to magnetically induced electric fields. Experimentally observed stimulation with the electric fields perpendicular to the nerve trunk cannot be explained by transverse polarization and is likely due to nerve fiber undulation and other geometrical inhomogeneities.

摘要

我们提出了一种理论和计算模型,将磁场刺激产生的电场与神经元膜耦合。基于磁场诱导电场的特性和我们之前开发的修正电缆方程,我们推导出了准电势,作为将电场与神经元耦合的简单而准确的近似。我们使用传统和修正的电缆方程来模拟圆形和 8 字形线圈对长外周神经的磁刺激。对于代表无髓和有髓直轴突的两种非线性膜模型,以及对于波动的有髓轴突,我们获得了在横向和垂直线圈位置的一系列激活阈值。对于无髓直轴突,由于横向极化,修正电缆方程得到的阈值显著降低,阈值的空间分布与激活函数的预测有很大不同。然而,修正电缆方程得到的无髓轴突的激活阈值非常高,超出了传统磁刺激器的输出能力。对于有髓轴突,两种电缆方程得到的阈值值相似,并且在磁刺激器的范围内。虽然横向场对有髓纤维的激活阈值贡献可以忽略不计,但轴突波动可以根据线圈位置显著增加或降低阈值。该分析为使用电缆方程来模拟磁场诱导电场对神经元的响应提供了严格的理论基础和实现方法。与神经干垂直的电场的实验观察到的刺激不能用横向极化来解释,可能是由于神经纤维波动和其他几何不均匀性所致。

相似文献

1
Coupling Magnetically Induced Electric Fields to Neurons: Longitudinal and Transverse Activation.
Biophys J. 2018 Jul 3;115(1):95-107. doi: 10.1016/j.bpj.2018.06.004.
3
4
Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model.
Med Biol Eng Comput. 2011 Jan;49(1):107-19. doi: 10.1007/s11517-010-0704-0. Epub 2010 Nov 10.
6
Generalized cable equation model for myelinated nerve fiber.
IEEE Trans Biomed Eng. 2005 Oct;52(10):1632-42. doi: 10.1109/TBME.2005.856031.
7
Calculation of electric fields in a multiple cylindrical volume conductor induced by magnetic coils.
IEEE Trans Biomed Eng. 2001 Jan;48(1):78-86. doi: 10.1109/10.900251.
8
A generalized cable equation for magnetic stimulation of axons.
IEEE Trans Biomed Eng. 1996 Mar;43(3):304-12. doi: 10.1109/10.486288.
9
Axonal stimulation under MRI magnetic field z gradients: a modeling study.
Magn Reson Med. 1997 Nov;38(5):750-8. doi: 10.1002/mrm.1910380511.

引用本文的文献

2
Directional sensitivity of cortical neurons towards TMS-induced electric fields.
Imaging Neurosci (Camb). 2023 Dec 4;1. doi: 10.1162/imag_a_00036. eCollection 2023.
3
Transparent and Conformal Microcoil Arrays for Spatially Selective Neuronal Activation.
Device. 2024 Apr 19;2(4). doi: 10.1016/j.device.2024.100290. Epub 2024 Mar 5.
4
A survey on integral equations for bioelectric modeling.
Phys Med Biol. 2024 Aug 28;69(17). doi: 10.1088/1361-6560/ad66a9.
5
Quasistatic approximation in neuromodulation.
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.
6
Cellular mechanisms underlying carry-over effects after magnetic stimulation.
Sci Rep. 2024 Mar 2;14(1):5167. doi: 10.1038/s41598-024-55915-8.
8
Estimations of Charge Deposition Onto Convoluted Axon Surfaces Within Extracellular Electric Fields.
IEEE Trans Biomed Eng. 2024 Jan;71(1):307-317. doi: 10.1109/TBME.2023.3299734. Epub 2023 Dec 25.
10
Rapid estimation of cortical neuron activation thresholds by transcranial magnetic stimulation using convolutional neural networks.
Neuroimage. 2023 Jul 15;275:120184. doi: 10.1016/j.neuroimage.2023.120184. Epub 2023 May 23.

本文引用的文献

2
Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation.
Clin Neurophysiol. 2017 Oct;128(10):2043-2047. doi: 10.1016/j.clinph.2017.06.041. Epub 2017 Jul 17.
3
The development and modelling of devices and paradigms for transcranial magnetic stimulation.
Int Rev Psychiatry. 2017 Apr;29(2):115-145. doi: 10.1080/09540261.2017.1305949. Epub 2017 Apr 26.
4
A multi-scale computational model of the effects of TMS on motor cortex.
F1000Res. 2016 Aug 10;5:1945. doi: 10.12688/f1000research.9277.3. eCollection 2016.
5
Analytical solution for time-dependent potentials in a fiber stimulated by an external electrode.
Med Biol Eng Comput. 2016 Nov;54(11):1719-1725. doi: 10.1007/s11517-016-1459-z. Epub 2016 Mar 10.
6
Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation.
J Comput Neurosci. 2016 Feb;40(1):51-64. doi: 10.1007/s10827-015-0585-1. Epub 2015 Dec 30.
7
Modulation of sensorimotor cortex by repetitive peripheral magnetic stimulation.
Front Hum Neurosci. 2015 Jul 14;9:407. doi: 10.3389/fnhum.2015.00407. eCollection 2015.
8
A μm-Scale Computational Model of Magnetic Neural Stimulation in Multifascicular Peripheral Nerves.
IEEE Trans Biomed Eng. 2015 Dec;62(12):2837-49. doi: 10.1109/TBME.2015.2446761. Epub 2015 Jun 17.
9
Subject-Specific Multiscale Modeling to Investigate Effects of Transcranial Magnetic Stimulation.
Neuromodulation. 2015 Dec;18(8):694-704. doi: 10.1111/ner.12296. Epub 2015 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验