Yu Fengshou, Poole David, Mathew Simon, Yan Ning, Hessels Joeri, Orth Nicole, Ivanović-Burmazović Ivana, Reek Joost N H
Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands.
Lehrstuhl für Bioanorganische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universitaet, Egerlandstrasse 3, 91058, Erlangen, Germany.
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11247-11251. doi: 10.1002/anie.201805244. Epub 2018 Aug 1.
Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10 m) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m). The preorganization strategy enhances the water oxidation rate by two-orders of magnitude to 125 s , as it facilitates the diffusion-controlled rate-limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.
通过水氧化催化生成氧气是可再生能源燃料生产背景下的关键反应。能够以低过电位高速催化水氧化的均相催化剂数量有限。钌配合物可能特别活跃,尤其是当它们促进氧键形成步骤的双核途径时。据报道,一种超分子封装策略,涉及对钌配合物的稀溶液(10 M)进行预组装,以产生高局部催化剂浓度(高达0.54 M)。预组装策略将水氧化速率提高了两个数量级,达到125 s,因为它促进了扩散控制的限速双核偶联步骤。此外,它还能调节反应速率,从而全面阐明电催化反应机制。