Suppr超能文献

连续血糖监测和胰岛素智能咨询系统,结合胰岛素自动调整和给药,可降低 1 型糖尿病患者的血糖变异性。

Continuous Glucose Monitoring and Insulin Informed Advisory System with Automated Titration and Dosing of Insulin Reduces Glucose Variability in Type 1 Diabetes Mellitus.

机构信息

Center for Diabetes Technology, University of Virginia , Charlottesville, Virginia.

出版信息

Diabetes Technol Ther. 2018 Aug;20(8):531-540. doi: 10.1089/dia.2018.0079. Epub 2018 Jul 6.

Abstract

BACKGROUND

Glucose variability (GV) remains a key limiting factor in the success of diabetes management. While new technologies, for example, accurate continuous glucose monitoring (CGM) and connected insulin delivery devices, are now available, current treatment standards fail to leverage the wealth of information generated. Expert systems, from automated insulin delivery to advisory systems, are a key missing element to richer, more personalized, glucose management in diabetes.

METHODS

Twenty four subjects with type 1 diabetes mellitus (T1DM), 15 women, 37 ± 11 years of age, hemoglobin A1c 7.2% ± 1%, total daily insulin (TDI) 46.7 ± 22.3 U, using either an insulin pump or multiple daily injections with carbohydrate counting, completed two randomized crossover 48-h visits at the University of Virginia, wearing Dexcom G4 CGM, and using either usual care or the UVA decision support system (DSS). DSS consisted of a combination of automated insulin titration, bolus calculation, and CHO treatment advice. During each admission, participants were exposed to a variety of meal sizes and contents and two 45-min bouts of exercise. GV and glucose control were assessed using CGM.

RESULTS

The use of DSS significantly reduced GV (coefficient of variation: 0.36 ± 08. vs. 0.33 ± 0.06, P = 0.045) while maintaining glycemic control (average CGM: 155.2 ± 27.1 mg/dL vs. 155.2 ± 23.2 mg/dL), by reducing hypoglycemia exposure (%<70 mg/dL: 3.8% ± 4.6% vs. 1.8% ± 2%, P = 0.018), with nonsignificant trends toward reduction of significant hyperglycemia overnight (%>250 mg/dL: 5.3% ± 9.5% vs. 1.9% ± 4.6%) and at mealtime (11.3% ± 14.8% vs. 5.8% ± 9.1%).

CONCLUSIONS

A CGM/insulin informed advisory system proved to be safe and feasible in a cohort of 24 T1DM subjects. Use of the system may result in reduced GV and improved protection against hypoglycemia.

摘要

背景

血糖变异性(GV)仍然是糖尿病管理成功的关键限制因素。虽然现在有新的技术,例如准确的连续血糖监测(CGM)和连接的胰岛素输送设备,但当前的治疗标准未能利用产生的大量信息。专家系统,从自动胰岛素输送到咨询系统,是糖尿病中更丰富、更个性化的血糖管理的一个关键缺失元素。

方法

24 名 1 型糖尿病(T1DM)患者,15 名女性,37±11 岁,糖化血红蛋白 7.2%±1%,总日胰岛素(TDI)46.7±22.3U,使用胰岛素泵或多次每日注射和碳水化合物计数,在弗吉尼亚大学完成了两次随机交叉 48 小时访问,佩戴 Dexcom G4 CGM,并使用常规护理或 UVA 决策支持系统(DSS)。DSS 由自动胰岛素滴定、推注计算和 CHO 治疗建议的组合组成。在每次入院期间,参与者暴露于各种不同大小和内容的膳食以及两次 45 分钟的运动。使用 CGM 评估 GV 和血糖控制。

结果

使用 DSS 可显著降低 GV(变异系数:0.36±08. vs. 0.33±0.06,P=0.045),同时保持血糖控制(平均 CGM:155.2±27.1 vs. 155.2±23.2 mg/dL),通过减少低血糖暴露(%<70 mg/dL:3.8%±4.6% vs. 1.8%±2%,P=0.018),同时夜间(%>250 mg/dL:5.3%±9.5% vs. 1.9%±4.6%)和用餐时间(11.3%±14.8% vs. 5.8%±9.1%)的显著高血糖呈显著趋势降低。

结论

在 24 名 T1DM 患者的队列中,CGM/胰岛素信息咨询系统被证明是安全且可行的。该系统的使用可能会降低 GV 并改善对低血糖的保护。

相似文献

引用本文的文献

3
7. Diabetes Technology: Standards of Care in Diabetes-2025.7. 糖尿病技术:2025年糖尿病照护标准
Diabetes Care. 2025 Jan 1;48(Supplement_1):S146-S166. doi: 10.2337/dc25-S007.
6
7. Diabetes Technology: Standards of Care in Diabetes-2024.7. 糖尿病技术:2024年糖尿病护理标准
Diabetes Care. 2024 Jan 1;47(Suppl 1):S126-S144. doi: 10.2337/dc24-S007.

本文引用的文献

5
Using Digital Health Technology to Prevent and Treat Diabetes.利用数字健康技术预防和治疗糖尿病。
Diabetes Technol Ther. 2016 Feb;18 Suppl 1(Suppl 1):S56-68. doi: 10.1089/dia.2016.2506.
9
Performance of Cleared Blood Glucose Monitors.已清除血糖监测仪的性能
J Diabetes Sci Technol. 2015 Jul;9(4):895-910. doi: 10.1177/1932296815584797. Epub 2015 Jun 8.
10
Optimization of insulin pump therapy based on high order run-to-run control scheme.基于高阶逐次控制方案的胰岛素泵治疗优化。
Comput Methods Programs Biomed. 2015 Jul;120(3):123-34. doi: 10.1016/j.cmpb.2015.04.010. Epub 2015 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验