Suppr超能文献

1型糖尿病患者中度运动期间及运动后即刻血糖动态变化主要影响因素的识别

Identification of Main Factors Explaining Glucose Dynamics During and Immediately After Moderate Exercise in Patients With Type 1 Diabetes.

作者信息

Ben Brahim Najib, Place Jerome, Renard Eric, Breton Marc D

机构信息

Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA Department of Endocrinology, Diabetes, Nutrition and Clinical Investigation Center INSERM 1411, Montpellier University Hospital and Institute of Functional Genomics, CNRS 5203/INSERM U1191/University of Montpellier, Montpellier, France.

Department of Endocrinology, Diabetes, Nutrition and Clinical Investigation Center INSERM 1411, Montpellier University Hospital and Institute of Functional Genomics, CNRS 5203/INSERM U1191/University of Montpellier, Montpellier, France.

出版信息

J Diabetes Sci Technol. 2015 Oct 18;9(6):1185-91. doi: 10.1177/1932296815607864.

Abstract

BACKGROUND

Physical activity is recommended for patients with type 1 diabetes (T1D). However, without proper management, it can lead to higher risk for hypoglycemia and impaired glycemic control. In this work, we identify the main factors explaining the blood glucose dynamics during exercise in T1D. We then propose a prediction model to quantify the glycemic drop induced by a mild to moderate physical activity.

METHODS

A meta-data analysis was conducted over 59 T1D patients from 4 different studies in the United States and France (37 men and 22 women; 47 adults; weight, 71.4 ± 10.6 kg; age, 42 ± 10 years; 12 adolescents: weight, 60.7 ± 12.5 kg; age, 14.0 ± 1.4 years). All participants had physical activity between 3 and 5 pm at a mild to moderate intensity for approximately 30 to 45 min. A multiple linear regression analysis was applied to the data to identify the main parameters explaining the glucose dynamics during such physical activity.

RESULTS

The blood glucose at the beginning of exercise ([Formula: see text]), the ratio of insulin on board over total daily insulin ([Formula: see text]) and the age as a categorical variable (1 for adult, 0 for adolescents) were significant factors involved in glucose evolution at exercise (all P < .05). The multiple linear regression model has an R-squared of .6.

CONCLUSIONS

The main factors explaining glucose dynamics in the presence of mild-to-moderate exercise in T1D have been identified. The clinical parameters are formally quantified using real data collected during clinical trials. The multiple linear regression model used to predict blood glucose during exercise can be applied in closed-loop control algorithms developed for artificial pancreas.

摘要

背景

建议1型糖尿病(T1D)患者进行体育活动。然而,如果管理不当,可能会导致低血糖风险增加和血糖控制受损。在这项研究中,我们确定了解释T1D患者运动期间血糖动态变化的主要因素。然后,我们提出了一个预测模型,以量化轻度至中度体育活动引起的血糖下降。

方法

对来自美国和法国4项不同研究的59名T1D患者进行了元数据分析(37名男性和22名女性;47名成年人;体重71.4±10.6千克;年龄42±10岁;12名青少年:体重60.7±12.5千克;年龄14.0±1.4岁)。所有参与者在下午3点至5点之间进行轻度至中度强度的体育活动,持续约30至45分钟。对数据进行多元线性回归分析,以确定解释此类体育活动期间葡萄糖动态变化的主要参数。

结果

运动开始时的血糖([公式:见正文])、餐时胰岛素与每日总胰岛素的比值([公式:见正文])以及作为分类变量的年龄(成人=1,青少年=0)是运动时血糖变化的重要因素(所有P<.05)。多元线性回归模型的R平方为0.6。

结论

已确定了解释T1D患者在轻度至中度运动时血糖动态变化的主要因素。使用临床试验期间收集的真实数据对临床参数进行了正式量化。用于预测运动期间血糖的多元线性回归模型可应用于为人工胰腺开发的闭环控制算法中。

相似文献

2
Classification of Physical Activity: Information to Artificial Pancreas Control Systems in Real Time.
J Diabetes Sci Technol. 2015 Oct 6;9(6):1200-7. doi: 10.1177/1932296815609369.
3
Physical Activity Capture Technology With Potential for Incorporation Into Closed-Loop Control for Type 1 Diabetes.
J Diabetes Sci Technol. 2015 Oct 18;9(6):1208-16. doi: 10.1177/1932296815609949.
4
Exercise and the Development of the Artificial Pancreas: One of the More Difficult Series of Hurdles.
J Diabetes Sci Technol. 2015 Oct 1;9(6):1217-26. doi: 10.1177/1932296815609370.
5
Fluctuations of Hyperglycemia and Insulin Sensitivity Are Linked to Menstrual Cycle Phases in Women With T1D.
J Diabetes Sci Technol. 2015 Oct 14;9(6):1192-9. doi: 10.1177/1932296815608400.
8
An integrated multivariable artificial pancreas control system.
J Diabetes Sci Technol. 2014 May;8(3):498-507. doi: 10.1177/1932296814524862. Epub 2014 Apr 7.

引用本文的文献

2
Quantifying the impact of physical activity on future glucose trends using machine learning.
iScience. 2022 Feb 8;25(3):103888. doi: 10.1016/j.isci.2022.103888. eCollection 2022 Mar 18.
3
Maximal Fat Oxidation During Exercise Is Already Impaired in Pre-pubescent Children With Type 1 Diabetes Mellitus.
Front Physiol. 2021 Apr 9;12:664211. doi: 10.3389/fphys.2021.664211. eCollection 2021.
4
Modelling glucose dynamics during moderate exercise in individuals with type 1 diabetes.
PLoS One. 2021 Mar 26;16(3):e0248280. doi: 10.1371/journal.pone.0248280. eCollection 2021.
5
Artificial Intelligence in Decision Support Systems for Type 1 Diabetes.
Sensors (Basel). 2020 Jun 5;20(11):3214. doi: 10.3390/s20113214.
6
Closed loop control in adolescents and children during winter sports: Use of the Tandem Control-IQ AP system.
Pediatr Diabetes. 2019 Sep;20(6):759-768. doi: 10.1111/pedi.12867. Epub 2019 May 23.
8
Multivariable Adaptive Artificial Pancreas System in Type 1 Diabetes.
Curr Diab Rep. 2017 Aug 15;17(10):88. doi: 10.1007/s11892-017-0920-1.
9
Use of Wearable Sensors and Biometric Variables in an Artificial Pancreas System.
Sensors (Basel). 2017 Mar 7;17(3):532. doi: 10.3390/s17030532.
10
Reducing Glucose Variability Due to Meals and Postprandial Exercise in T1DM Using Switched LPV Control: In Silico Studies.
J Diabetes Sci Technol. 2016 May 3;10(3):744-53. doi: 10.1177/1932296816638857. Print 2016 May.

本文引用的文献

1
The impact of accelerometer use in exercise-associated hypoglycemia prevention in type 1 diabetes.
J Diabetes Sci Technol. 2015 Jan;9(1):80-5. doi: 10.1177/1932296814551045. Epub 2014 Sep 17.
3
Outpatient glycemic control with a bionic pancreas in type 1 diabetes.
N Engl J Med. 2014 Jul 24;371(4):313-325. doi: 10.1056/NEJMoa1314474. Epub 2014 Jun 15.
4
Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas.
Diabetes Care. 2014 Jul;37(7):1789-96. doi: 10.2337/dc13-2076. Epub 2014 Jun 14.
5
Effect of algorithm aggressiveness on the performance of the Hypoglycemia-Hyperglycemia Minimizer (HHM) System.
J Diabetes Sci Technol. 2014 Jul;8(4):685-90. doi: 10.1177/1932296814534589. Epub 2014 May 18.
6
Closed-loop artificial pancreas systems: engineering the algorithms.
Diabetes Care. 2014;37(5):1191-7. doi: 10.2337/dc13-2108.
8
Multivariable adaptive identification and control for artificial pancreas systems.
IEEE Trans Biomed Eng. 2014 Mar;61(3):883-91. doi: 10.1109/TBME.2013.2291777.
9
Autonomous and continuous adaptation of a bihormonal bionic pancreas in adults and adolescents with type 1 diabetes.
J Clin Endocrinol Metab. 2014 May;99(5):1701-11. doi: 10.1210/jc.2013-4151. Epub 2014 Jan 31.
10
Model-based closed-loop glucose control in type 1 diabetes: the DiaCon experience.
J Diabetes Sci Technol. 2013 Sep 1;7(5):1255-64. doi: 10.1177/193229681300700515.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验