Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, the Netherlands.
Ernst Strüngmann Institute for Neuroscience in cooperation with Max Planck Society, Frankfurt am Main, Germany.
PLoS Comput Biol. 2018 Jul 6;14(7):e1006283. doi: 10.1371/journal.pcbi.1006283. eCollection 2018 Jul.
Temporally ordered multi-neuron patterns likely encode information in the brain. We introduce an unsupervised method, SPOTDisClust (Spike Pattern Optimal Transport Dissimilarity Clustering), for their detection from high-dimensional neural ensembles. SPOTDisClust measures similarity between two ensemble spike patterns by determining the minimum transport cost of transforming their corresponding normalized cross-correlation matrices into each other (SPOTDis). Then, it performs density-based clustering based on the resulting inter-pattern dissimilarity matrix. SPOTDisClust does not require binning and can detect complex patterns (beyond sequential activation) even when high levels of out-of-pattern "noise" spiking are present. Our method handles efficiently the additional information from increasingly large neuronal ensembles and can detect a number of patterns that far exceeds the number of recorded neurons. In an application to neural ensemble data from macaque monkey V1 cortex, SPOTDisClust can identify different moving stimulus directions on the sole basis of temporal spiking patterns.
时间有序的多神经元模式可能在大脑中编码信息。我们引入了一种无监督的方法,即 SPOTDisClust(尖峰模式最优传输不相似性聚类),用于从高维神经集合中检测它们。SPOTDisClust 通过确定将相应的归一化互相关矩阵转换为彼此的最小传输成本来测量两个集合尖峰模式之间的相似性(SPOTDis)。然后,它基于生成的模式间不相似性矩阵执行基于密度的聚类。SPOTDisClust 不需要 binning,并且即使存在高水平的模式外“噪声”尖峰,也可以检测复杂的模式(超出顺序激活)。我们的方法有效地处理来自不断增大的神经元集合的附加信息,并且可以检测远远超过记录神经元数量的许多模式。在对猕猴 V1 皮层神经集合数据的应用中,SPOTDisClust 可以仅基于时间尖峰模式识别不同的运动刺激方向。