Suppr超能文献

无监督发现高维数据集的时间序列,及其在神经科学中的应用。

Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience.

机构信息

McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.

Neurosciences Program, Stanford University, Stanford, United States.

出版信息

Elife. 2019 Feb 5;8:e38471. doi: 10.7554/eLife.38471.

Abstract

Identifying low-dimensional features that describe large-scale neural recordings is a major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to be a salient feature of neural dynamics, but are not succinctly captured by traditional dimensionality reduction techniques. Here, we describe a software toolbox-called seqNMF-with new methods for extracting informative, non-redundant, sequences from high-dimensional neural data, testing the significance of these extracted patterns, and assessing the prevalence of sequential structure in data. We test these methods on simulated data under multiple noise conditions, and on several real neural and behavioral datas. In hippocampal data, seqNMF identifies neural sequences that match those calculated manually by reference to behavioral events. In songbird data, seqNMF discovers neural sequences in untutored birds that lack stereotyped songs. Thus, by identifying temporal structure directly from neural data, seqNMF enables dissection of complex neural circuits without relying on temporal references from stimuli or behavioral outputs.

摘要

确定能够描述大规模神经记录的低维特征是神经科学的主要挑战。重复的时间模式(序列)被认为是神经动力学的一个显著特征,但传统的降维技术并不能简洁地捕捉到这些模式。在这里,我们描述了一个名为 seqNMF 的软件工具箱,它具有从高维神经数据中提取信息丰富、非冗余序列的新方法,用于测试这些提取模式的显著性,并评估数据中序列结构的普遍性。我们在多种噪声条件下的模拟数据以及多个真实的神经和行为数据上测试了这些方法。在海马体数据中,seqNMF 可以识别与手动参考行为事件计算出的神经序列相匹配的序列。在鸣禽数据中,seqNMF 可以在没有刻板歌曲的未经训练的鸟类中发现神经序列。因此,seqNMF 通过直接从神经数据中识别时间结构,能够在不依赖于刺激或行为输出的时间参考的情况下,对复杂的神经回路进行剖析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验