Suppr超能文献

通过 RNA 聚合酶介导的从双链 DNA 断裂中置换 Cas9 实现增强的细菌免疫和哺乳动物基因组编辑。

Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks.

机构信息

Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.

Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA.

出版信息

Mol Cell. 2018 Jul 5;71(1):42-55.e8. doi: 10.1016/j.molcel.2018.06.005.

Abstract

The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing.

摘要

通过与单引导 RNA(sgRNA)的 Watson-Crick 碱基配对将 Cas9 核酸酶靶向 DNA 序列的能力为基因组编辑提供了一个动态工具,并且是细菌适应性免疫系统的重要组成部分。在产生双链断裂(DSB)之后,Cas9 仍然稳定地与 DNA 结合。在这里,我们表明持续的 Cas9 结合阻止了修复酶对 DSB 的进入,从而降低了基因组编辑的效率。RNA 聚合酶可以通过易位来将 Cas9 置换,但前提是聚合酶从一个方向朝 Cas9-DSB 复合物靠近。通过利用这些 RNA 聚合酶/Cas9 相互作用,可以将 Cas9 条件性地转化为多轮核酸酶,从而在哺乳动物细胞中增加突变频率,并增强细菌对噬菌体的免疫能力。这种稳定的 Cas9-DSB 复合物的后果为研究原间隔基序(PAM)序列的进化以及提高基因组编辑中高度活跃 sgRNA 选择的简单方法提供了线索。

相似文献

5
CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
Genome Res. 2020 May;30(5):768-775. doi: 10.1101/gr.257493.119. Epub 2020 Apr 23.
6
Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
J Virol. 2018 Aug 16;92(17). doi: 10.1128/JVI.00534-18. Print 2018 Sep 1.
7
CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway.
Protein Cell. 2020 May;11(5):352-365. doi: 10.1007/s13238-020-00699-6. Epub 2020 Mar 13.
8
Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
Mol Cell. 2018 Jun 7;70(5):801-813.e6. doi: 10.1016/j.molcel.2018.04.016. Epub 2018 May 24.
9
Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing.
ACS Chem Biol. 2018 Feb 16;13(2):438-442. doi: 10.1021/acschembio.7b00652. Epub 2017 Sep 15.
10
Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
FEBS J. 2018 Sep;285(18):3362-3375. doi: 10.1111/febs.14626. Epub 2018 Aug 25.

引用本文的文献

1
AAV-dCas9 vector unsilences paternal Ube3a in neurons by impeding Ube3a-ATS transcription.
Commun Biol. 2025 Sep 2;8(1):1332. doi: 10.1038/s42003-025-08794-2.
2
Off-target interactions in the CRISPR-Cas9 Machinery: mechanisms and outcomes.
Biochem Biophys Rep. 2025 Jul 5;43:102134. doi: 10.1016/j.bbrep.2025.102134. eCollection 2025 Sep.
3
Visualization of a multi-turnover Cas9 after product release.
Nat Commun. 2025 Jul 1;16(1):5681. doi: 10.1038/s41467-025-60668-7.
4
A Molecular Glue Approach to Control the Half-Life of CRISPR-Based Technologies.
J Am Chem Soc. 2025 Jul 9;147(27):23844-23856. doi: 10.1021/jacs.5c06230. Epub 2025 Jun 30.
5
High-Fidelity, One-Pot Nucleic Acid Amplification via OMEGA IsrB Nickase Cycling for Clinical Pathogen Detection.
JACS Au. 2025 Jun 9;5(6):2802-2809. doi: 10.1021/jacsau.5c00379. eCollection 2025 Jun 23.
7
Combining CRISPR activation and interference capabilities using dCas9 and G-quadruplex structures.
NAR Mol Med. 2025 Jan 28;2(1):ugaf001. doi: 10.1093/narmme/ugaf001. eCollection 2025 Jan.
9
Combining the CRISPR Activation and Interference Capabilities Using dCas9 and G-Quadruplex Structures.
bioRxiv. 2024 Nov 20:2024.11.19.624357. doi: 10.1101/2024.11.19.624357.
10
Engineered transcription-associated Cas9 targeting in eukaryotic cells.
Nat Commun. 2024 Nov 27;15(1):10287. doi: 10.1038/s41467-024-54629-9.

本文引用的文献

1
In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation.
Cell. 2017 Dec 14;171(7):1495-1507.e15. doi: 10.1016/j.cell.2017.10.025. Epub 2017 Dec 7.
2
Kinetics of dCas9 target search in .
Science. 2017 Sep 29;357(6358):1420-1424. doi: 10.1126/science.aah7084. Epub 2017 Sep 28.
3
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.
Nature. 2017 Oct 19;550(7676):407-410. doi: 10.1038/nature24268. Epub 2017 Sep 20.
4
High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5461-5466. doi: 10.1073/pnas.1700557114. Epub 2017 May 11.
6
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
7
Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells.
Nucleic Acids Res. 2016 Sep 19;44(16):7997-8010. doi: 10.1093/nar/gkw685. Epub 2016 Aug 2.
8
Analyzing CRISPR genome-editing experiments with CRISPResso.
Nat Biotechnol. 2016 Jul 12;34(7):695-7. doi: 10.1038/nbt.3583.
9
Comparison of Cas9 activators in multiple species.
Nat Methods. 2016 Jul;13(7):563-567. doi: 10.1038/nmeth.3871. Epub 2016 May 23.
10
Nucleosomes impede Cas9 access to DNA in vivo and in vitro.
Elife. 2016 Mar 17;5:e12677. doi: 10.7554/eLife.12677.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验