Heikel Edvard, Sassenhagen Jona, Fiebach Christian J
Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Brain Lang. 2018 Sep;184:43-53. doi: 10.1016/j.bandl.2018.06.007. Epub 2018 Jul 3.
Event-related brain potentials have a strong impact on neurocognitive models, as they inform about the temporal sequence of cognitive processes. Nevertheless, their value for deciding among alternative cognitive architectures is partly limited by component overlap and the possibility of ambiguity regarding component identity. Here, we apply temporally-generalized multivariate pattern analysis - a recently-proposed machine learning method capable of tracking the evolution of neurocognitive processes over time - to constrain possible alternative architectures underlying the processing of semantic incongruency in sentences. In a spoken sentence paradigm, we replicate established N400/P600 correlates of semantic mismatch. Time-generalized decoding indicates that early vs. late mismatch-sensitive processes are (i) distinct in their neural substrate, arguing against recurrent or latency-shifted single process architectures, and (ii) partially overlapping in time, inconsistent with predictions of strictly serial models. These results are in accordance with an incremental-cascading neurocognitive organization of semantic mismatch processing. We propose time-generalized multivariate decoding as a valuable tool for neurocognitive language studies.
与事件相关的脑电活动对神经认知模型有很大影响,因为它们能反映认知过程的时间序列。然而,它们在区分不同认知架构方面的价值部分受到成分重叠以及成分身份模糊性的限制。在此,我们应用时间广义多变量模式分析——一种最近提出的能够追踪神经认知过程随时间演变的机器学习方法——来限制句子语义不一致处理背后可能的替代架构。在一个口语句子范式中,我们重现了已确立的语义不匹配的N400/P600相关成分。时间广义解码表明,早期与晚期不匹配敏感过程在神经基础上是(i)不同的,这与循环或潜伏期转移的单一过程架构相悖,并且(ii)在时间上部分重叠,这与严格串行模型的预测不一致。这些结果与语义不匹配处理的增量级联神经认知组织一致。我们提出时间广义多变量解码作为神经认知语言研究的一个有价值的工具。