Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation, 119991.
Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia, 143028.
Neurogenetics. 2018 Aug;19(3):189-204. doi: 10.1007/s10048-018-0553-9. Epub 2018 Jul 7.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to the eventual death of motor neurons. Described cases of familial ALS have emphasized the significance of protein misfolding and aggregation of two functionally related proteins, FUS (fused in sarcoma) and TDP-43, implicated in RNA metabolism. Herein, we performed a comprehensive analysis of the in vivo model of FUS-mediated proteinopathy (ΔFUS(1-359) mice). First, we used the Noldus CatWalk system and confocal microscopy to determine the time of onset of the first clinical symptoms and the appearance of FUS-positive inclusions in the cytoplasm of neuronal cells. Second, we applied RNA-seq to evaluate changes in the gene expression profile encompassing the pre-symptomatic and the symptomatic stages of disease progression in motor neurons and the surrounding microglia of the spinal cord. The resulting data show that FUS-mediated proteinopathy is virtually asymptomatic in terms of both the clinical symptoms and the molecular aspects of neurodegeneration until it reaches the terminal stage of disease progression (120 days from birth). After this time, the pathological process develops very rapidly, resulting in the formation of massive FUS-positive inclusions accompanied by a transcriptional "burst" in the spinal cord cells. Specifically, it manifests in activation of a pro-inflammatory phenotype of microglial cells and malfunction of acetylcholine synapse transmission in motor neurons. Overall, we assume that the highly reproducible course of the pathological process, as well as the described accompanying features, makes ΔFUS(1-359) mice a convenient model for testing potential therapeutics against proteinopathy-induced decay of motor neurons.
肌萎缩侧索硬化症(ALS)是一种神经退行性疾病,最终导致运动神经元死亡。描述的家族性 ALS 病例强调了两种功能相关蛋白 FUS(肉瘤融合)和 TDP-43 的蛋白质错误折叠和聚集的重要性,这两种蛋白与 RNA 代谢有关。在此,我们对 FUS 介导的蛋白病的体内模型(ΔFUS(1-359) 小鼠)进行了全面分析。首先,我们使用 Noldus CatWalk 系统和共聚焦显微镜来确定首次出现临床症状和 FUS 阳性包涵体出现在神经元细胞质中的时间。其次,我们应用 RNA-seq 来评估运动神经元和脊髓周围小胶质细胞中疾病进展的预症状和症状阶段的基因表达谱变化。所得数据表明,在疾病进展的终末阶段(出生后 120 天)之前,FUS 介导的蛋白病在临床症状和神经退行性变性的分子方面几乎没有症状。在此之后,病理过程发展非常迅速,导致大量 FUS 阳性包涵体的形成,同时伴随着脊髓细胞中的转录“爆发”。具体而言,它表现为小胶质细胞的促炎表型的激活和运动神经元中乙酰胆碱突触传递的功能障碍。总体而言,我们假设病理过程的高度可重复性以及所描述的伴随特征使 ΔFUS(1-359) 小鼠成为测试针对蛋白病诱导的运动神经元衰减的潜在治疗方法的便利模型。