Suppr超能文献

基于磁泳的微磁流体学的最新进展与当前挑战

Recent advances and current challenges in magnetophoresis based micro magnetofluidics.

作者信息

Munaz Ahmed, Shiddiky Muhammad J A, Nguyen Nam-Trung

机构信息

Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.

出版信息

Biomicrofluidics. 2018 Jun 21;12(3):031501. doi: 10.1063/1.5035388. eCollection 2018 May.

Abstract

The combination of magnetism and microscale fluid flow has opened up a new era for handling and manipulation of samples in microfluidics. In particular, magnetophoresis, the migration of particles in a magnetic field, is extremely attractive for microfluidic handling due to its contactless nature, independence of ionic concentration, and lack of induced heating. The present paper focuses on recent advances and current challenges of magnetophoresis and highlights the key parameters affecting the manipulation of particles by magnetophoresis. The magnetic field is discussed according to their relative motion to the sample as stationary and dynamic fields. The migration of particles is categorized as positive and negative magnetophoresis. The applications of magnetophoresis are discussed according to the basic manipulation tasks such as mixing, separation, and trapping of particles or cells. Finally, the paper highlights the limitations of current approaches and provides the future perspective for this research area.

摘要

磁性与微尺度流体流动的结合为微流控中样品的处理和操控开启了一个新时代。特别是磁泳,即颗粒在磁场中的迁移,因其非接触性质、与离子浓度无关且无感应加热,对于微流控处理极具吸引力。本文聚焦于磁泳的最新进展和当前挑战,并突出了影响磁泳操控颗粒的关键参数。根据磁场与样品的相对运动,将磁场分为静态场和动态场进行讨论。颗粒的迁移分为正向磁泳和负向磁泳。根据诸如颗粒或细胞的混合、分离和捕获等基本操控任务,讨论了磁泳的应用。最后,本文强调了当前方法的局限性,并给出了该研究领域的未来展望。

相似文献

1
Recent advances and current challenges in magnetophoresis based micro magnetofluidics.
Biomicrofluidics. 2018 Jun 21;12(3):031501. doi: 10.1063/1.5035388. eCollection 2018 May.
2
Microfluidics Based Magnetophoresis: A Review.
Chem Rec. 2018 Nov;18(11):1596-1612. doi: 10.1002/tcr.201800018. Epub 2018 Jun 11.
3
Label-Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids.
Adv Funct Mater. 2016 Jun 14;26(22):3916-3932. doi: 10.1002/adfm.201504178. Epub 2016 Apr 14.
4
Separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis.
Electrophoresis. 2020 Jun;41(10-11):909-916. doi: 10.1002/elps.202000002. Epub 2020 Mar 19.
5
Constitutive relationship and governing physical properties for magnetophoresis.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30208-30214. doi: 10.1073/pnas.2018568117. Epub 2020 Nov 17.
6
Unified View of Magnetic Nanoparticle Separation under Magnetophoresis.
Langmuir. 2020 Jul 21;36(28):8033-8055. doi: 10.1021/acs.langmuir.0c00839. Epub 2020 Jul 8.
8
Negative magnetophoresis in diluted ferrofluid flow.
Lab Chip. 2015 Jul 21;15(14):2998-3005. doi: 10.1039/c5lc00427f.
9
Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids.
Micromachines (Basel). 2019 Oct 31;10(11):744. doi: 10.3390/mi10110744.
10
Multiphase ferrofluid flows for micro-particle focusing and separation.
Biomicrofluidics. 2016 May 5;10(3):034101. doi: 10.1063/1.4948656. eCollection 2016 May.

引用本文的文献

1
Enhancing cell characterization with microfluidics and AI: a comprehensive review of mechanical, electrical, and hybrid techniques.
Biotechnol Rep (Amst). 2025 Jul 22;47:e00905. doi: 10.1016/j.btre.2025.e00905. eCollection 2025 Sep.
2
Droplet acoustofluidics: Recent progress and challenges.
Biomicrofluidics. 2025 Jun 4;19(3):031502. doi: 10.1063/5.0261531. eCollection 2025 May.
3
Investigation of pressure balance in proximity of sidewalls in deterministic lateral displacement.
Biomicrofluidics. 2025 May 13;19(3):034102. doi: 10.1063/5.0272397. eCollection 2025 May.
4
A Review on AC-Dielectrophoresis of Nanoparticles.
Micromachines (Basel). 2025 Apr 11;16(4):453. doi: 10.3390/mi16040453.
5
Isolation of adipose stromal cells from blood using a two-step microfluidic platform ASCfinder.
Sci Rep. 2025 Mar 26;15(1):10471. doi: 10.1038/s41598-025-94353-y.
8
Microfluidic Nanoparticle Separation for Precision Medicine.
Adv Sci (Weinh). 2025 Jan;12(4):e2411278. doi: 10.1002/advs.202411278. Epub 2024 Dec 4.
9
Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.
Sci Rep. 2024 Jun 10;14(1):13293. doi: 10.1038/s41598-024-64330-y.

本文引用的文献

1
Label-free ferrohydrodynamic cell separation of circulating tumor cells.
Lab Chip. 2017 Sep 12;17(18):3097-3111. doi: 10.1039/c7lc00680b.
2
Label-Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids.
Adv Funct Mater. 2016 Jun 14;26(22):3916-3932. doi: 10.1002/adfm.201504178. Epub 2016 Apr 14.
4
Particle manipulations in non-Newtonian microfluidics: A review.
J Colloid Interface Sci. 2017 Aug 15;500:182-201. doi: 10.1016/j.jcis.2017.04.019. Epub 2017 Apr 8.
5
Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood - A review.
Anal Chim Acta. 2017 May 1;965:9-35. doi: 10.1016/j.aca.2017.02.017. Epub 2017 Feb 20.
6
Advancements in microfluidics for nanoparticle separation.
Lab Chip. 2016 Dec 20;17(1):11-33. doi: 10.1039/c6lc01045h.
7
Magnetically active micromixer assisted synthesis of drug nanocomplexes exhibiting strong bactericidal potential.
Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:455-464. doi: 10.1016/j.msec.2016.06.015. Epub 2016 Jun 6.
8
Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays.
Biomicrofluidics. 2016 Jul 5;10(4):044103. doi: 10.1063/1.4955421. eCollection 2016 Jul.
9
Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids.
Adv Funct Mater. 2016 Jun 14;26(22):3990-3998. doi: 10.1002/adfm.201503838. Epub 2015 Dec 7.
10
A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids.
Lab Chip. 2016 Aug 7;16(15):2946-54. doi: 10.1039/c6lc00815a. Epub 2016 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验