School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
University of Toronto Institute of Aerospace Studies, Toronto, ON M3H 5T6, Canada.
Sensors (Basel). 2018 Jul 6;18(7):2185. doi: 10.3390/s18072185.
In this paper, we present a complete, flexible and safe convex-optimization-based method to solve speed planning problems over a fixed path for autonomous driving in both static and dynamic environments. Our contributions are five fold. First, we summarize the most common constraints raised in various autonomous driving scenarios as the requirements for speed planner developments and metrics to measure the capacity of existing speed planners roughly for autonomous driving. Second, we introduce a more general, flexible and complete speed planning mathematical model including all the summarized constraints compared to the state-of-the-art speed planners, which addresses limitations of existing methods and is able to provide smooth, safety-guaranteed, dynamic-feasible, and time-efficient speed profiles. Third, we emphasize comfort while guaranteeing fundamental motion safety without sacrificing the mobility of cars by treating the comfort box constraint as a semi-hard constraint in optimization via slack variables and penalty functions, which distinguishes our method from existing ones. Fourth, we demonstrate that our problem preserves convexity with the added constraints, thus global optimality of solutions is guaranteed. Fifth, we showcase how our formulation can be used in various autonomous driving scenarios by providing several challenging case studies in both static and dynamic environments. A range of numerical experiments and challenging realistic speed planning case studies have depicted that the proposed method outperforms existing speed planners for autonomous driving in terms of constraint type covered, optimality, safety, mobility and flexibility.
本文提出了一种完整、灵活和安全的基于凸优化的方法,用于解决自动驾驶中固定路径上的速度规划问题,包括静态和动态环境。我们的贡献有五个方面。首先,我们总结了各种自动驾驶场景中最常见的约束条件,作为速度规划器开发的要求,并提出了衡量现有速度规划器能力的指标,以便大致了解其在自动驾驶中的应用。其次,我们引入了一个更通用、灵活和完整的速度规划数学模型,包括所有总结的约束条件,与现有速度规划器相比,该模型解决了现有方法的局限性,并能够提供平滑、安全保障、动态可行和高效的速度剖面。第三,我们通过使用松弛变量和惩罚函数将舒适盒约束视为优化中的半硬约束,在保证基本运动安全性的同时强调舒适性,而不会牺牲汽车的机动性,这使我们的方法与现有方法区分开来。第四,我们证明了我们的问题在添加约束后保持凸性,从而保证了解的全局最优性。第五,我们通过在静态和动态环境中提供几个具有挑战性的案例研究,展示了我们的公式如何在各种自动驾驶场景中使用。一系列数值实验和具有挑战性的现实速度规划案例研究表明,与现有的自动驾驶速度规划器相比,所提出的方法在约束类型、最优性、安全性、机动性和灵活性方面都具有更好的性能。