Suppr超能文献

一种稳健的融合模型,用于从光电容积脉搏波和心电图估计呼吸率。

A Robust Fusion Model for Estimating Respiratory Rate From Photoplethysmography and Electrocardiography.

出版信息

IEEE Trans Biomed Eng. 2018 Sep;65(9):2033-2041. doi: 10.1109/TBME.2017.2778265. Epub 2017 Dec 19.

Abstract

OBJECTIVE

Respiratory rate (RR) estimation algorithms based on the photoplethymogram (PPG) and electrocardiogram (ECG) lack clinical robustness. This is because the PPG and ECG respiratory modulations are dependent on patient physiology, regardless of general signal quality. The present work describes an RR estimation algorithm using respiratory quality indices (RQIs) that assess the presence or absence of the PPG- and ECG-derived respiratory modulations.

METHODS

Six respiratory waveforms are derived from the amplitude modulation, frequency modulation, and baseline wander of the PPG and ECG. The respiratory quality of each modulation is assessed by using RQIs based on the fast Fourier transform, autoregression, and autocorrelation. The individual RQIs are fused to obtain a single RQI per modulation per time window. Based on a tunable threshold, the RQIs are used to discard poor modulations and weight the remaining modulations to provide a single RR estimation per time window.

RESULTS

The proposed method was tested on two independent datasets and found that using a conservative threshold, the mean absolute error was 0.71 $\pm$ 0.89 and 3.12 $\pm$ 4.39 brpm while discarding only 1.3% and 23.2% of all time windows, for each dataset, respectively.

CONCLUSION

These errors are either better than or comparable to current methods, and the number of windows discarded is far lower demonstrating improved robustness.

SIGNIFICANCE

This work describes a novel preprocessing algorithm that can be implemented in conjunction with other RR estimation techniques to improve robustness by specifically considering the quality of the respiratory information.

摘要

目的

基于光体积描记图(PPG)和心电图(ECG)的呼吸率(RR)估计算法缺乏临床稳健性。这是因为 PPG 和 ECG 呼吸调制依赖于患者的生理状况,而与一般信号质量无关。本工作描述了一种使用呼吸质量指数(RQI)的 RR 估计算法,该算法评估 PPG 和 ECG 衍生的呼吸调制的存在或不存在。

方法

从 PPG 和 ECG 的幅度调制、频率调制和基线漂移中得出六个呼吸波形。使用基于快速傅里叶变换、自回归和自相关的 RQI 评估每个调制的呼吸质量。将各个 RQI 融合以获得每个时间窗口每个调制的单个 RQI。基于可调阈值,使用 RQI 丢弃较差的调制,并对剩余的调制进行加权,以提供每个时间窗口的单个 RR 估计。

结果

该方法在两个独立的数据集上进行了测试,发现使用保守阈值时,每个数据集的平均绝对误差分别为 0.71 $\pm$ 0.89 和 3.12 $\pm$ 4.39 brpm,而丢弃的时间窗口分别仅为 1.3%和 23.2%。

结论

这些误差要么优于要么与当前方法相当,并且丢弃的窗口数量要低得多,表明稳健性得到了提高。

意义

这项工作描述了一种新颖的预处理算法,可与其他 RR 估计技术结合使用,通过专门考虑呼吸信息的质量来提高稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验