Suppr超能文献

使用惯性传感器对帕金森病患者的步态冻结进行建模、检测和跟踪。

Modeling, Detecting, and Tracking Freezing of Gait in Parkinson Disease Using Inertial Sensors.

出版信息

IEEE Trans Biomed Eng. 2018 Oct;65(10):2152-2161. doi: 10.1109/TBME.2017.2785625. Epub 2017 Dec 20.

Abstract

In this paper, we develop new methods to automatically detect the onset and duration of freezing of gait (FOG) in people with Parkinson disease (PD) in real time, using inertial sensors. We first build a physical model that describes the trembling motion during the FOG events. Then, we design a generalized likelihood ratio test framework to develop a two-stage detector for determining the zero-velocity and trembling events during gait. Thereafter, to filter out falsely detected FOG events, we develop a point-process filter that combines the output of the detectors with information about the speed of the foot, provided by a foot-mounted inertial navigation system. We computed the probability of FOG by using the point-process filter to determine the onset and duration of the FOG event. Finally, we validate the performance of the proposed system design using real data obtained from people with PD who performed a set of gait tasks. We compare our FOG detection results with an existing method that only uses accelerometer data. The results indicate that our method yields 81.03% accuracy in detecting FOG events and a threefold decrease in the false-alarm rate relative to the existing method.

摘要

在本文中,我们使用惯性传感器为帕金森病(PD)患者开发了新的实时自动检测冻结步态(FOG)发作和持续时间的方法。我们首先建立了一个物理模型,描述了 FOG 事件期间的颤抖运动。然后,我们设计了一个广义似然比检验框架,开发了一个两阶段检测器,用于确定步态期间的零速度和颤抖事件。此后,为了滤除误检的 FOG 事件,我们开发了一个点过程滤波器,该滤波器将检测器的输出与由足部惯性导航系统提供的足部速度信息结合起来。我们通过使用点过程滤波器来确定 FOG 事件的发作和持续时间,计算 FOG 的概率。最后,我们使用 PD 患者执行一组步态任务时获得的真实数据验证了所提出的系统设计的性能。我们将我们的 FOG 检测结果与仅使用加速度计数据的现有方法进行了比较。结果表明,我们的方法在检测 FOG 事件方面的准确率为 81.03%,与现有方法相比,误报率降低了三倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验