Park Jae-Min, Moon Chang-Won, Lee Byung Chan, Oh Eungseok, Lee Juhyun, Jang Won-Jun, Cho Kang Hee, Lee Si-Hyeon
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
Front Aging Neurosci. 2024 Jul 18;16:1437707. doi: 10.3389/fnagi.2024.1437707. eCollection 2024.
Freezing of gait (FoG) is a common and debilitating symptom of Parkinson's disease (PD) that can lead to falls and reduced quality of life. Wearable sensors have been used to detect FoG, but current methods have limitations in accuracy and practicality. In this paper, we aimed to develop a deep learning model using pressure sensor data from wearable insoles to accurately detect FoG in PD patients.
We recruited 14 PD patients and collected data from multiple trials of a standardized walking test using the Pedar insole system. We proposed temporal convolutional neural network (TCNN) and applied rigorous data filtering and selective participant inclusion criteria to ensure the integrity of the dataset. We mapped the sensor data to a structured matrix and normalized it for input into our TCNN. We used a train-test split to evaluate the performance of the model.
We found that TCNN model achieved the highest accuracy, precision, sensitivity, specificity, and F1 score for FoG detection compared to other models. The TCNN model also showed good performance in detecting FoG episodes, even in various types of sensor noise situations.
We demonstrated the potential of using wearable pressure sensors and machine learning models for FoG detection in PD patients. The TCNN model showed promising results and could be used in future studies to develop a real-time FoG detection system to improve PD patients' safety and quality of life. Additionally, our noise impact analysis identifies critical sensor locations, suggesting potential for reducing sensor numbers.
冻结步态(FoG)是帕金森病(PD)常见且使人衰弱的症状,可导致跌倒并降低生活质量。可穿戴传感器已被用于检测冻结步态,但目前的方法在准确性和实用性方面存在局限性。在本文中,我们旨在利用可穿戴鞋垫的压力传感器数据开发一种深度学习模型,以准确检测帕金森病患者的冻结步态。
我们招募了14名帕金森病患者,并使用Pedar鞋垫系统从标准化步行测试的多次试验中收集数据。我们提出了时间卷积神经网络(TCNN),并应用严格的数据过滤和选择性参与者纳入标准来确保数据集的完整性。我们将传感器数据映射到一个结构化矩阵,并对其进行归一化处理,以输入到我们的TCNN中。我们使用训练-测试分割来评估模型的性能。
我们发现,与其他模型相比,TCNN模型在冻结步态检测方面实现了最高的准确率、精确率、灵敏度、特异性和F1分数。即使在各种类型的传感器噪声情况下,TCNN模型在检测冻结步态发作方面也表现出良好的性能。
我们证明了使用可穿戴压力传感器和机器学习模型检测帕金森病患者冻结步态的潜力。TCNN模型显示出有前景的结果,可用于未来的研究,以开发一个实时冻结步态检测系统,以提高帕金森病患者的安全性和生活质量。此外,我们的噪声影响分析确定了关键的传感器位置,表明有可能减少传感器数量。