Wan Donghui, Jiang Xiuhua, Yu Qiangguo
State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, 100024, China.
School of Electronic Information, Huzhou College, Huzhou, 313000, China.
Sci Rep. 2025 Mar 28;15(1):10808. doi: 10.1038/s41598-025-94005-1.
High Dynamic Range (HDR) images, with their expanded range of brightness and color, provide a far more realistic and immersive viewing experience compared to Low Dynamic Range (LDR) images. However, the significant increase in peak luminance and contrast inherent in HDR images often accentuates artifacts, thus limiting the effectiveness of traditional LDR-based image quality assessment (IQA) algorithms when applied to HDR content. To address this, we propose a novel blind IQA method tailored specifically for HDR images, which incorporates both the perception and inference processes of the human visual system (HVS). Our approach begins with multi-scale Retinex decomposition to generate reflectance maps with varying sensitivity, followed by the calculation of gradient similarities from these maps to model the perception process. Deep feature maps are then extracted from the last pooling layer of a pretrained VGG16 network to capture inference characteristics. These gradient similarity maps and deep feature maps are subsequently aggregated for quality prediction using support vector regression (SVR). Experimental results demonstrate that the proposed method achieves outstanding performance, outperforming other state-of-the-art HDR IQA metrics.
高动态范围(HDR)图像具有扩展的亮度和色彩范围,与低动态范围(LDR)图像相比,能提供更加逼真和身临其境的观看体验。然而,HDR图像固有的峰值亮度和对比度显著增加,往往会使伪像更加明显,从而限制了传统基于LDR的图像质量评估(IQA)算法应用于HDR内容时的有效性。为了解决这个问题,我们提出了一种专门针对HDR图像的新型盲IQA方法,该方法结合了人类视觉系统(HVS)的感知和推理过程。我们的方法首先进行多尺度视网膜分解,以生成具有不同敏感度的反射率图,然后从这些图中计算梯度相似度,以模拟感知过程。接着从预训练的VGG16网络的最后一个池化层提取深度特征图,以捕捉推理特征。随后,使用支持向量回归(SVR)对这些梯度相似度图和深度特征图进行聚合,以进行质量预测。实验结果表明,所提出的方法取得了优异的性能,优于其他现有的HDR IQA指标。