IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1203-1216. doi: 10.1109/TCBB.2017.2773477. Epub 2017 Nov 14.
As a well-established computational framework, probabilistic Boolean networks (PBNs) are widely used for modelling, simulation, and analysis of biological systems. To analyze the steady-state dynamics of PBNs is of crucial importance to explore the characteristics of biological systems. However, the analysis of large PBNs, which often arise in systems biology, is prone to the infamous state-space explosion problem. Therefore, the employment of statistical methods often remains the only feasible solution. We present ${\mathsf{ASSA-PBN}}$ , a software toolbox for modelling, simulation, and analysis of PBNs. ${\mathsf{ASSA-PBN}}$ provides efficient statistical methods with three parallel techniques to speed up the computation of steady-state probabilities. Moreover, particle swarm optimisation (PSO) and differential evolution (DE) are implemented for the estimation of PBN parameters. Additionally, we implement in-depth analyses of PBNs, including long-run influence analysis, long-run sensitivity analysis, computation of one-parameter profile likelihoods, and the visualization of one-parameter profile likelihoods. A PBN model of apoptosis is used as a case study to illustrate the main functionalities of ${\mathsf{ASSA-PBN}}$ and to demonstrate the capabilities of ${\mathsf{ASSA-PBN}}$ to effectively analyse biological systems modelled as PBNs.
作为一个成熟的计算框架,概率布尔网络(PBN)被广泛用于生物系统的建模、模拟和分析。分析 PBN 的稳态动力学对于探索生物系统的特性至关重要。然而,在系统生物学中经常出现的大型 PBN 的分析容易受到臭名昭著的状态空间爆炸问题的影响。因此,统计方法的应用通常仍然是唯一可行的解决方案。我们提出了 ASSA-PBN,这是一个用于 PBN 建模、模拟和分析的软件工具包。ASSA-PBN 提供了高效的统计方法,有三种并行技术可以加速稳态概率的计算。此外,粒子群优化(PSO)和差分进化(DE)被用于 PBN 参数的估计。此外,我们对 PBN 进行了深入分析,包括长期影响分析、长期敏感性分析、单参数似然函数的计算以及单参数似然函数的可视化。使用细胞凋亡的 PBN 模型作为案例研究来说明 ASSA-PBN 的主要功能,并展示 ASSA-PBN 有效分析生物系统的能力,这些生物系统被建模为 PBN。