Department of Chemistry and Biology, College of Science , National University of Defense Technology , Changsha 410073 , P. R. China.
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Department of Physics , Nanjing University , Nanjing 210093 , P. R. China.
ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25017-25025. doi: 10.1021/acsami.8b04752. Epub 2018 Jul 23.
Developing adhesives that can function underwater remains a major challenge for bioengineering, yet many marine creatures, exemplified as mussels and barnacles, have evolved their unique proteinaceous adhesives for strong wet adhesion. The mechanisms underlying the strong adhesion of these natural adhesive proteins provide rich information for biomimetic efforts. Here, combining atomic force microscopy (AFM) imaging and force spectroscopy, we examine the effects of pH on the self-assembly and adhesive properties of cp19k, a key barnacle underwater adhesive protein. For the first time, we confirm that the bacterial recombinant Balanus albicostatus cp19k (rBalcp19k), which contains no 3,4-dihydroxyphenylalanine (DOPA) or any other amino acids with post-translational modifications, can self-assemble into aggregated nanofibers at acidic pHs. Under moderately acidic conditions, the adhesion strength of unassembled monomeric rBalcp19k on mica is only slightly lower than that of a commercially available mussel adhesive protein mixture, yet the adhesion ability of rBalcp19k monomers decreases significantly at increased pH. In contrast, upon preassembly at acidic and low-salinity conditions, rBalcp19k nanofibers keep stable in basic and high-salinity seawater and display much stronger adhesion and thus show resistance to its adverse impacts. Besides, we find that the adhesion ability of Balcp19k is not impaired when it is combined with an N-terminal Thioredoxin (Trx) tag, yet whether the self-assembly property will be disrupted is not determined. Collectively, the self-assembly-enhanced adhesion presents a previously unexplored mechanism for the strong wet adhesion of barnacle cement proteins and may lead to the design of barnacle-inspired adhesive materials.
开发可在水下发挥作用的黏合剂仍然是生物工程领域的一大挑战,但许多海洋生物(如贻贝和藤壶)已经进化出独特的蛋白质黏附剂,以实现强大的湿黏附。这些天然黏附蛋白强大黏附力背后的机制为仿生学研究提供了丰富的信息。在这里,我们结合原子力显微镜(AFM)成像和力谱学,研究了 pH 值对关键藤壶水下黏附蛋白 cp19k 自组装和黏附性能的影响。首次证实,不含 3,4-二羟基苯丙氨酸(DOPA)或任何其他经翻译后修饰的氨基酸的细菌重组巴氏固着蛋白 Balanus albicostatus cp19k(rBalcp19k)可在酸性 pH 值下自组装成聚集的纳米纤维。在中等酸性条件下,未组装单体 rBalcp19k 在云母上的黏附强度仅略低于市售贻贝黏附蛋白混合物,但在 pH 值增加时,rBalcp19k 单体的黏附能力显著下降。相比之下,在酸性低盐条件下预组装后,rBalcp19k 纳米纤维在碱性高盐海水中保持稳定,并表现出更强的黏附力,从而表现出对其不利影响的抵抗力。此外,我们发现 rBalcp19k 与 N 端硫氧还蛋白(Trx)标签结合时其黏附能力不会受损,但自组装特性是否会受到破坏尚不确定。总的来说,自组装增强的黏附为藤壶水泥蛋白强大的湿黏附提供了一种以前未知的机制,可能会导致设计出受藤壶启发的黏附材料。