College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China.
Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
Biomacromolecules. 2022 May 9;23(5):2019-2030. doi: 10.1021/acs.biomac.2c00031. Epub 2022 Apr 28.
Peptides capable of self-assembling into different supramolecular structures have potential applications in a variety of areas. The biomimetic molecular design offers an important avenue to discover novel self-assembling peptides. Despite this, a lot of biomimetic self-assembling peptides have been reported so far; to continually expand the scope of peptide self-assembly, it is necessary to find out more novel self-assembling peptides. Barnacle cp19k, a key underwater adhesive protein, shows special block copolymer-like characteristics and diversified self-assembly properties, providing an ideal template for biomimetic peptide design. In this study, inspired by cp19k (Balcp19k), we rationally designed nine biomimetic peptides (P1-P9) and systematically studied their self-assembly behaviors for the first time. Combining microscale morphology observations and secondary structure analyses, we found that multiple biomimetic peptides derived from the central region and the C-terminus of Balcp19k form distinct supramolecular structures via different self-assembly mechanisms under acidic conditions. Specifically, P9 self-assembles into typical amyloid fibers. P7, which resembles ionic self-complementary peptides by containing nonstrictly alternating hydrophobic and charged amino acids, self-assembles into uniform, discrete nanofibers. P6 with amphipathic features forms twisted nanoribbons. Most interestingly, P4 self-assembles to form helical nanofibers and novel ring-shaped microstructures, showing unique self-assembly behaviors. Apart from their self-assembly properties, these peptides showed good cytocompatibility and demonstrated promising applications in biomedical areas. Our results expanded the repertoire of self-assembling peptides and provided new insights into the structure-function relationship of barnacle cp19k.
能够自组装成不同超分子结构的肽在许多领域都有潜在的应用。仿生分子设计为发现新型自组装肽提供了重要途径。尽管如此,到目前为止已经报道了大量的仿生自组装肽;为了不断扩大肽自组装的范围,有必要发现更多新的自组装肽。藤壶 cp19k 是一种关键的水下黏附蛋白,具有特殊的嵌段共聚物样特征和多样化的自组装特性,为仿生肽设计提供了理想的模板。在这项研究中,受 cp19k(Balcp19k)的启发,我们合理设计了 9 种仿生肽(P1-P9),并首次系统地研究了它们的自组装行为。通过微观形貌观察和二级结构分析相结合,我们发现 Balcp19k 中心区域和 C 末端衍生的多种仿生肽在酸性条件下通过不同的自组装机制形成不同的超分子结构。具体来说,P9 自组装成典型的淀粉样纤维。P7 含有非严格交替的疏水和带电氨基酸,类似于离子自互补肽,通过自组装形成均匀、离散的纳米纤维。具有两亲性特征的 P6 形成扭曲的纳米带。最有趣的是,P4 自组装形成螺旋纳米纤维和新颖的环形微结构,表现出独特的自组装行为。除了它们的自组装特性外,这些肽还表现出良好的细胞相容性,并在生物医学领域显示出有前途的应用。我们的结果扩展了自组装肽的种类,并为藤壶 cp19k 的结构-功能关系提供了新的见解。