Center for Psychopharmacology (B.M.W., E.M.), Departments of Rheumatology (S.W.S., E.L.), Internal Medicine (M.V.), and Medicinal Biochemistry (L.L.M.), Diakonhjemmet Hospital, Oslo, Norway; Institute for Experimental Medicinal Research, Oslo University Hospital, Oslo, Norway (M.V.); and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway (E.M.)
Center for Psychopharmacology (B.M.W., E.M.), Departments of Rheumatology (S.W.S., E.L.), Internal Medicine (M.V.), and Medicinal Biochemistry (L.L.M.), Diakonhjemmet Hospital, Oslo, Norway; Institute for Experimental Medicinal Research, Oslo University Hospital, Oslo, Norway (M.V.); and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway (E.M.).
Drug Metab Dispos. 2018 Oct;46(10):1384-1389. doi: 10.1124/dmd.118.082065. Epub 2018 Jul 10.
Systemic inflammation has been linked to suppressed CYP3A4 activity. The aim of this study was to examine associations between levels of a broad selection of cytokines and CYP3A4 phenotype in patients with rheumatoid arthritis (RA). The study included 31 RA patients treated with tumor necrosis factor (TNF)- inhibitors. CYP3A4 phenotype was measured as serum concentration of 4-hydroxycholesterol (4OHC) by ultra-performance liquid chromatography-tandem mass spectrometry in samples collected prior to and 3 months after initiation of treatment with TNF- inhibitors. Serum levels of the following 21 cytokines were determined in the same samples using a bead-based multiplex immunoassay (Luminex technology): CCL2, CCL3, CXCL8, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon , interleukin (IL)-1, IL-1 receptor antagonist (ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-15, IL-17A, IL-18, IL-23, and TNF- Correlations between levels of cytokines and 4OHC were assessed by Spearman's rank correlation tests. Among the investigated cytokines, three were negatively correlated with CYP3A4 phenotype during treatment with TNF- inhibitors: i.e., IL-1ra ( = -0.408, = 0.023), IL-6 ( = -0.410, = 0.022) and CXCL8 ( = -0.403, = 0.025) ( ≥ 0.3 for all other cytokines). None of the analyzed cytokines were correlated with CYP3A4 phenotype prior to TNF- inhibitor treatment ( > 0.1 for all cytokines). These findings suggest that immune responses associated with increased levels of IL-1ra, IL-6, and CXCL8 may suppress CYP3A4 metabolism. Further studies are required to evaluate these preliminary findings in different patient populations and also examine the possible molecular mechanisms behind our observations.
系统性炎症与 CYP3A4 活性抑制有关。本研究旨在探讨类风湿关节炎(RA)患者广泛选择的细胞因子水平与 CYP3A4 表型之间的关联。该研究纳入了 31 名接受肿瘤坏死因子(TNF)抑制剂治疗的 RA 患者。通过超高效液相色谱-串联质谱法在接受 TNF 抑制剂治疗前和治疗 3 个月后采集的血清样本中测量 CYP3A4 表型,作为 4-羟胆固醇(4OHC)的血清浓度。使用基于珠的多重免疫分析(Luminex 技术)在相同样本中测定以下 21 种细胞因子的血清水平:CCL2、CCL3、CXCL8、粒细胞集落刺激因子、粒细胞-巨噬细胞集落刺激因子、干扰素、白细胞介素(IL)-1、IL-1 受体拮抗剂(ra)、IL-2、IL-4、IL-5、IL-6、IL-7、IL-10、IL-12、IL-13、IL-15、IL-17A、IL-18、IL-23 和 TNF-α。通过 Spearman 秩相关检验评估细胞因子水平与 4OHC 之间的相关性。在所研究的细胞因子中,有三种在接受 TNF 抑制剂治疗期间与 CYP3A4 表型呈负相关:即 IL-1ra(= -0.408,= 0.023)、IL-6(= -0.410,= 0.022)和 CXCL8(= -0.403,= 0.025)(所有其他细胞因子≥0.3)。在接受 TNF 抑制剂治疗之前,没有一种分析的细胞因子与 CYP3A4 表型相关(所有细胞因子>0.1)。这些发现表明,与 IL-1ra、IL-6 和 CXCL8 水平升高相关的免疫反应可能抑制 CYP3A4 代谢。需要进一步的研究来评估这些初步发现在不同患者群体中的情况,并研究我们观察结果背后的可能分子机制。