College of Engineering and Applied Sciences, University of Wyoming, Laramie, WY, 82071, USA.
College of Arts and Sciences, University of Wyoming, Laramie, WY, 82071, USA.
Nat Commun. 2018 Jul 10;9(1):2672. doi: 10.1038/s41467-018-05145-0.
Implementing Paris Climate Accord is inhibited by the high energy consumption of the state-of-the-art CO capture technologies due to the notoriously slow kinetics in CO desorption step of CO capture. To address the challenge, here we report that nanostructured TiO(OH) as a catalyst is capable of drastically increasing the rates of CO desorption from spent monoethanolamine (MEA) by over 4500%. This discovery makes CO capture successful at much lower temperatures, which not only dramatically reduces energy consumption but also amine losses and prevents emission of carcinogenic amine-decomposition byproducts. The catalytic effect of TiO(OH) is observed with Raman characterization. The stabilities of the catalyst and MEA are confirmed with 50 cyclic CO sorption and sorption. A possible mechanism is proposed for the TiO(OH)-catalyzed CO capture. TiO(OH) could be a key to the future success of Paris Climat e Accord.
由于 CO 捕集过程中 CO 解吸步骤的动力学性质众所周知的缓慢,最先进的 CO 捕获技术的高能耗抑制了《巴黎气候协定》的实施。为了解决这一挑战,我们在此报告,纳米结构的 TiO(OH)作为一种催化剂能够使从用过的单乙醇胺 (MEA)中解吸 CO 的速率大幅提高 4500%以上。这一发现使得 CO 捕集能够在更低的温度下成功进行,这不仅大大降低了能耗,而且减少了胺的损失,并防止了致癌胺分解副产物的排放。TiO(OH)的催化作用通过拉曼特征得到证实。催化剂和 MEA 的稳定性通过 50 次循环 CO 吸附和吸附得到证实。提出了一种 TiO(OH)催化 CO 捕集的可能机制。TiO(OH)可能是未来《巴黎气候协定》成功的关键。