文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用编码局部投影表示医学图像。

Representing Medical Images With Encoded Local Projections.

出版信息

IEEE Trans Biomed Eng. 2018 Oct;65(10):2267-2277. doi: 10.1109/TBME.2018.2791567. Epub 2018 Jan 10.


DOI:10.1109/TBME.2018.2791567
PMID:29993412
Abstract

This paper introduces the "encoded local projections" (ELP) as a new dense-sampling image descriptor for search and classification problems. The gradient changes of multiple projections in local windows of gray-level images are encoded to build a histogram that captures spatial projection patterns. Using projections is a conventional technique in both medical imaging and computer vision. Furthermore, powerful dense-sampling methods, such as local binary patterns and the histogram of oriented gradients, are widely used for image classification and recognition. Inspired by many achievements of such existing descriptors, we explore the design of a new class of histogram-based descriptors with particular applications in medical imaging. We experiment with three public datasets (IRMA, Kimia Path24, and CT Emphysema) to comparatively evaluate the performance of ELP histograms. In light of the tremendous success of deep architectures, we also compare the results with deep features generated by pretrained networks. The results are quite encouraging as the ELP descriptor can surpass both conventional and deep descriptors in performance in several experimental settings.

摘要

本文提出了“编码局部投影”(ELP)作为一种新的密集采样图像描述符,用于搜索和分类问题。对灰度图像局部窗口中多个投影的梯度变化进行编码,以构建一个直方图,该直方图捕获空间投影模式。在医学成像和计算机视觉中,投影都是一种传统技术。此外,强大的密集采样方法,如局部二值模式和方向梯度直方图,被广泛用于图像分类和识别。受这些现有描述符的许多成果的启发,我们探索设计一类新的基于直方图的描述符,特别应用于医学成像。我们在三个公共数据集(IRMA、Kimia Path24 和 CT Emphysema)上进行实验,以比较 ELP 直方图的性能。鉴于深度架构的巨大成功,我们还将结果与预训练网络生成的深度特征进行比较。结果令人鼓舞,因为在几个实验设置中,ELP 描述符的性能可以超过传统描述符和深度描述符。

相似文献

[1]
Representing Medical Images With Encoded Local Projections.

IEEE Trans Biomed Eng. 2018-1-10

[2]
Medical Image Retrieval via Histogram of Compressed Scattering Coefficients.

IEEE J Biomed Health Inform. 2017-9

[3]
A novel biomedical image indexing and retrieval system via deep preference learning.

Comput Methods Programs Biomed. 2018-2-6

[4]
Medical Image Retrieval Using Empirical Mode Decomposition with Deep Convolutional Neural Network.

Biomed Res Int. 2020

[5]
Classification of Medical Images in the Biomedical Literature by Jointly Using Deep and Handcrafted Visual Features.

IEEE J Biomed Health Inform. 2017-11-20

[6]
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.

J Med Syst. 2018-1-25

[7]
USB: ultrashort binary descriptor for fast visual matching and retrieval.

IEEE Trans Image Process. 2014-6-12

[8]
Medical image classification using spatial adjacent histogram based on adaptive local binary patterns.

Comput Biol Med. 2016-5-1

[9]
HSOG: a novel local image descriptor based on histograms of the second-order gradients.

IEEE Trans Image Process. 2014-9-4

[10]
Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features.

IEEE Trans Biomed Eng. 2018-8-20

引用本文的文献

[1]
Current Developments of Artificial Intelligence in Digital Pathology and Its Future Clinical Applications in Gastrointestinal Cancers.

Cancers (Basel). 2022-8-3

[2]
Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence.

NPJ Digit Med. 2020-3-10

[3]
Artificial Intelligence and Digital Pathology: Challenges and Opportunities.

J Pathol Inform. 2018-11-14

[4]
An Automatic Classification Method on Chronic Venous Insufficiency Images.

Sci Rep. 2018-12-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索