Suppr超能文献

人工智能与数字病理学:挑战与机遇

Artificial Intelligence and Digital Pathology: Challenges and Opportunities.

作者信息

Tizhoosh Hamid Reza, Pantanowitz Liron

机构信息

Kimia Lab, University of Waterloo, Canada.

Huron Digital Pathology, Engineering Department, St. Jacobs, ON, Canada.

出版信息

J Pathol Inform. 2018 Nov 14;9:38. doi: 10.4103/jpi.jpi_53_18. eCollection 2018.

Abstract

In light of the recent success of artificial intelligence (AI) in computer vision applications, many researchers and physicians expect that AI would be able to assist in many tasks in digital pathology. Although opportunities are both manifest and tangible, there are clearly many challenges that need to be overcome in order to exploit the AI potentials in computational pathology. In this paper, we strive to provide a realistic account of all challenges and opportunities of adopting AI algorithms in digital pathology from both engineering and pathology perspectives.

摘要

鉴于人工智能(AI)近期在计算机视觉应用中取得的成功,许多研究人员和医生期望AI能够协助数字病理学中的许多任务。尽管机遇明显且切实存在,但为了在计算病理学中发挥AI的潜力,显然还有许多挑战需要克服。在本文中,我们力求从工程学和病理学的角度,对在数字病理学中采用AI算法所面临的所有挑战和机遇给出一个实际的描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验